19.如果拋物線y2=ax的準(zhǔn)線是直線x=-1,那么它的焦點(diǎn)坐標(biāo)為(1,0).

分析 由拋物線方程可知:焦點(diǎn)在x軸正半軸,$\frac{p}{2}$=1,則拋物線的焦點(diǎn)坐標(biāo)為:(1,0).

解答 解:由題意可知:拋物線y2=ax的準(zhǔn)線是直線x=-1,即拋物線的焦點(diǎn)在x軸正半軸,$\frac{p}{2}$=1,
∴拋物線的焦點(diǎn)坐標(biāo)為:(1,0),
故答案為:(1,0).

點(diǎn)評 本題考查拋物線的性質(zhì),考查拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.
(3)求當(dāng)x為何值時,函數(shù)取最大值,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知命題p:?x0∈R,$sin{x_0}<\frac{1}{2}{x_0}$,則¬p為?x∈R,sin x≥$\frac{1}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知三棱錐的俯視圖與側(cè)視圖如圖所示,俯視圖是邊長為2的正三角形,側(cè)視圖是有一條直角邊為2的直角三角形,則該三棱錐的正視圖可能為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x∈N|ex<9},其中e為自然對數(shù)的底數(shù),e≈2.718281828,集合B={x|x(x-2)<0},則A∩(∁RB)的真子集個數(shù)為( 。
A.3B.4C.7D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線C的漸近線方程為x±2y=0,且點(diǎn)A(5,0)到雙曲線上動點(diǎn)P的最小距離為$\sqrt{6}$,求C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=lnx+\frac{a}{x-1}$在$(0,\frac{1}{e})$內(nèi)有極值,則實數(shù)a的取值范圍是(e+$\frac{1}{e}$-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC的三個內(nèi)角A,B,C對應(yīng)的三條邊長分別是a,b,c,且滿足csin A+$\sqrt{3}$acos C=0.則角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=2ax-1(a>0,且a≠1)的圖象恒過定點(diǎn),若該定點(diǎn)在一次函數(shù)y=mx+n的圖象上,其中m,n>0,則$\frac{1}{m}+\frac{1}{n}$的最小值為2.

查看答案和解析>>

同步練習(xí)冊答案