精英家教網 > 高中數學 > 題目詳情
已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構成等差數列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.
(1)
(2)

試題分析:(1)依題意,設橢圓的方程為.
構成等差數列,
, .
,.
橢圓的方程為   
(2) 將直線的方程代入橢圓的方程中,
 
由直線與橢圓僅有一個公共點知,,

化簡得: 
,
(法一)當時,設直線的傾斜角為,
,
,      
,時,,,.
時,四邊形是矩形, 
所以四邊形面積的最大值為 
(法二)


四邊形的面積,                        
                                                   
當且僅當時,,故
所以四邊形的面積的最大值為 
點評:主要是考查了橢圓方程,以及直線與橢圓的位置關系的運用,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點P為焦點F1關于直線的對稱點,動點M滿足. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標及此定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,已知過橢圓的左頂點作直線軸于點,交橢圓于點,若是等腰三角形,且,則橢圓的離心率為         .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,已知橢圓的中心在原點,焦點在軸上,短軸長為,離心率為.
(I)求橢圓的方程;
(II) 為橢圓上滿足的面積為的任意兩點,為線段的中點,射線交橢圓與點,設,求實數的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

分別是橢圓:的左、右焦點,過傾斜角為的直線 與該橢圓相交于P,兩點,且.
(Ⅰ)求該橢圓的離心率;
(Ⅱ)設點 滿足,求該橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓具有 (   )
A.相同的長軸長B.相同的焦點
C.相同的離心率D.相同的頂點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設為橢圓上任意一點,以為圓心,為半徑作圓,當圓與橢圓的右準線有公共點時,求△面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

中心在坐標原點,焦點在軸上的橢圓的離心率為,且經過點。若分別過橢圓的左右焦點、的動直線相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率、、滿足

(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓過點,且離心率e=.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點,且線段的垂直平分線過定點,求的取值范圍。

查看答案和解析>>

同步練習冊答案