已知橢圓
過點
,且離心率e=
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線
與橢圓交于不同的兩點
、
,且線段
的垂直平分線過定點
,求
的取值范圍。
(Ⅰ)
;(Ⅱ)
.
試題分析:(Ⅰ)由題意橢圓的離心率
∴橢圓方程為
…………2分
又點
在橢圓上
……………4分
∴橢圓的方程為
……………6分
(Ⅱ)設(shè)
由
消去
并整理得
…………8分
∵直線
與橢圓有兩個交點
,即
又
中點
的坐標(biāo)為
……10分
設(shè)
的垂直平分線
方程:
在
上
即
……11分
將上式代入得
即
或
的取值范圍為
……12分
點評:直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知兩點F
1(-1,0)及F
2(1,0),點P在以F
1、F
2為焦點的橢圓C上,且|PF
1|、|F
1F
2|、|PF
2|構(gòu)成等差數(shù)列.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F
1M⊥l, F
2N⊥l.求四邊形F
1MNF
2面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
求滿足下列條件的橢圓方程長軸在
軸上,長軸長等于12,離心率等于
;橢圓經(jīng)過點
;橢圓的一個焦點到長軸兩端點的距離分別為10和4.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,且過點(
),
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
,
是其左頂點和左焦點,
是圓
上的動點,若
,則此橢圓的離心率是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)
橢圓
:
的左、右頂點分別
、
,橢圓過點
且離心率
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過橢圓
上異于
、
兩點的任意一點
作
軸,
為垂足,延長
到點
,且
,過點
作直線
軸,連結(jié)
并延長交直線
于點
,線段
的中點記為點
.
①求點
所在曲線的方程;
②試判斷直線
與以
為直徑的圓
的位置關(guān)系, 并證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的左焦點為
, 點
在橢圓上, 如果線段
的中點
在
軸的
正半軸上, 那么點
的坐標(biāo)是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
,左右焦點分別為
,
(1)若
上一點
滿足
,求
的面積;
(2)直線
交
于點
,線段
的中點為
,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)設(shè)橢圓
的右焦點為
,直線
與
軸交于點
,若
(其中
為坐標(biāo)原點).
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
上的任意一點,
為圓
的任意一條直徑(
、
為直徑的兩個端點),求
的最大值.
查看答案和解析>>