精英家教網 > 高中數學 > 題目詳情

已知函數f(x)的導函數f(x)=-3x2+6x+9.
(1)求函數f(x)的單調區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

解:(1)由f′(x)=-3x2+6x+9=-3(x+1)(x-3)<0,得x<-1或x>3,
由f′(x)=-3(x+1)(x-3)>0,得-1<x<3,
∴函數f(x)的單調減區(qū)間為(-∞,-1)和(3,+∞),單調增區(qū)間為(-1,3);
(2)設f(x)=ax3+bx2+cx+d,則f′(x)=3ax2+2bx+c,
∴3a=-3,2b=6,c=9,
即a=-1,b=3,c=9.
故f(x)=-x3+3x2+9x+d,
由(1)知f(x)在(-2,-1)上單調遞減,在(-1,2)上單調遞增,
又f(2)=22+d>f(-2)=2-d,
∴f(x)max=22+d=20,
∴d=-2,
∴f(x)=-x3+3x2+9x-2,
∴f(x)在區(qū)間[-2,2]上的最小值為f(-1)=-7.
分析:(1)根據函數的單調性與導數的關系,令導數f′(x)>0(或<0),解不等式即可求出其單調遞增區(qū)間和單調遞減區(qū)間;
(2)根據函數的導數,設出函數f(x)=ax3+bx2+cx+d,求導,利用對應系數相等,求得a=-1,b=3,c=9,根據(1)可知函數在區(qū)間[-2,2]上的單調性,從而根據其最大值求出d的值,求出其最小值,
點評:本題考查利用導數研究函數的單調性和閉區(qū)間上函數的最值問題,根據函數的導數求出函數的解析式是解題的關鍵,增加了題目的難度,考查運算能力和逆向思維能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

4、已知函數f(x)的導函數f′(x)=a(x+1)(x-a),若f(x)在x=a處取到極大值,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

14、已知函數f(x)的導函數f′(x)=2x-5,且f(0)的值為整數,當x∈(n,n+1](n∈N*)時,f(x)的值為整數的個數有且只有1個,則n=
2

查看答案和解析>>

科目:高中數學 來源: 題型:

18、已知函數f(x)的導數f″(x)滿足0<f′(x)<1,常數a為方程f(x)=x的實數根.
(Ⅰ)若函數f(x)的定義域為M,對任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求證:方程f(x)=x存在唯一的實數根a;
(Ⅱ) 求證:當x>a時,總有f(x)<x成立;
(Ⅲ)對任意x1、x2,若滿足|x1-a|<2,|x2-a|<2,求證:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的導函數為f'(x),且滿足f(x)=2xf'(1)+lnx,則f(1)的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的導函數f′(x)的圖象如圖所示,那么(  )

查看答案和解析>>

同步練習冊答案