12.已知正方形ABCD的對角線相交于點O,若隨機(jī)向此正方形內(nèi)投放一顆豆子,則它落在△AOB內(nèi)的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 首先模長是幾何概型的概率求法,由題意利用面積比求概率即可.

解答 解:已知正方形ABCD的對角線相交于點O,若隨機(jī)向此正方形內(nèi)投放一顆豆子,則它落在△AOB內(nèi)的概率為$\frac{{S}_{△AOB}}{{S}_{正方形}}$=$\frac{1}{4}$;
故選A.

點評 本題考查了幾何概型的概率求法;關(guān)鍵是明確幾何測度為面積,利用面積比求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知X的分布列為:
X-101
P$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
設(shè)Y=2X+3,則Y的期望E(Y)=( 。
A.3B.1C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該著作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用.如圖所示的程序框圖的算法思路源于該著作中的“李白沽酒”問題,執(zhí)行該程序框圖,若輸出的m的值為0,則輸入的a的值為( 。
A.$\frac{21}{8}$B.$\frac{45}{16}$C.$\frac{93}{32}$D.$\frac{189}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對正整數(shù)m的3次冪有如下分解方式:
13=1        23=3+5       33=7+9+11      43=13+15+17+19
根據(jù)上述分解規(guī)律,則103的分解中最大的數(shù)是131.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x,y為正實數(shù),且滿足(xy-1)2=(3y+2)(y-2),則x+$\frac{1}{y}$的最大值為2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知一個質(zhì)點在腰長為4的等腰直角三角形內(nèi)隨機(jī)運動,則某時刻該質(zhì)點距離三角形的三個頂點的距離均超過1的概率為1-$\frac{π}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對于任意實數(shù)a,b,若a>b,則下列不等式一定成立的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.a2>b2C.a3>b3D.$\frac{a}$>$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知兩變量x,y之間的觀測數(shù)據(jù)如表所示,則回歸直線一定經(jīng)過的點的坐標(biāo)為( 。
X23456
y1.41.82.53.23.6
A.(0,0)B.(3,1.8)C.(4,2.5)D.(5,3.2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知邊長為2的正方形ABCD的四個頂點在球O的球面上,球O的體積為$\frac{{20\sqrt{5}π}}{3}$,則OA與平面ABCD所成的角的余弦值為( 。
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

同步練習(xí)冊答案