【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:(1)根據(jù)題設(shè)條件可以得出ABAP,CDPD.而AB//CD,就可證明出AB⊥平面PAD.

進(jìn)而證明出平面PAB⊥平面PAD.(2)先找出AD中點,找出相互垂直的線,建立以為坐標(biāo)原點, 的方向為軸正方向, 為單位長的空間直角坐標(biāo)系,列出所需要的點的坐標(biāo),設(shè)是平面的法向量, 是平面的法向量,根據(jù)垂直關(guān)系,求出,利用數(shù)量積公式可求出二面角的平面角.

試題解析:(1)由已知,得ABAP,CDPD.

由于ABCD,故ABPD,從而AB⊥平面PAD.

AB 平面PAB,所以平面PAB⊥平面PAD.

(2)在平面內(nèi)做,垂足為,

由(1)可知, 平面,故,可得平面.

為坐標(biāo)原點, 的方向為軸正方向, 為單位長,建立如圖所示的空間直角坐標(biāo)系.

由(1)及已知可得, , .

所以, , .

設(shè)是平面的法向量,則

,即,

可取.

設(shè)是平面的法向量,則

,即,

可取.

,

所以二面角的余弦值為.

點睛:高考對空間向量與立體幾何的考查主要體現(xiàn)在以下幾個方面:①求異面直線所成的角,關(guān)鍵是轉(zhuǎn)化為兩直線的方向向量的夾角;②求直線與平面所成的角,關(guān)鍵是轉(zhuǎn)化為直線的方向向量和平面的法向量的夾角;③求二面角,關(guān)鍵是轉(zhuǎn)化為兩平面的法向量的夾角.建立空間直角坐標(biāo)系和表示出所需點的坐標(biāo)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校1200名高三年級學(xué)生參加了一次數(shù)學(xué)測驗(滿分為100分),為了分析這次數(shù)學(xué)測驗的成績,從這1200人的數(shù)學(xué)成績中隨機(jī)抽出200人的成績繪制成如下的統(tǒng)計表,請根據(jù)表中提供的信息解決下列問題;
(1)求a、b、c的值;
(2)如果從這1200名學(xué)生中隨機(jī)取一人,試估計這名學(xué)生該次數(shù)學(xué)測驗及格的概率p(注:60分及60分以上為及格);
(3)試估計這次數(shù)學(xué)測驗的年級平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=ex(exa)﹣a2x

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點且與C相交于AB兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角AB,C的對邊分別為ab,c,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中點.
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系中,直線的方程為: ,直線的方程為

(Ⅰ)寫出曲線的直角坐標(biāo)方程,并指出它是何種曲線;

(Ⅱ)設(shè)與曲線交于兩點, 與曲線交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點DE,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊答案