在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線過點P(-2,-4)的直線為參數(shù))與曲線C相交于點M,N兩點.
(Ⅰ)求曲線C和直線的普通方程;
(Ⅱ)若|PM|,|MN|,|PN |成等比數(shù)列,求實數(shù)a的值.

(Ⅰ) 曲線方程,直線方程;(Ⅱ).

解析試題分析:(Ⅰ)把代入得曲線方程,將消參得直線方程;(Ⅱ) 將代入曲線方程,由韋達定理得,再根據(jù)解得.
試題解析:(Ⅰ)把代入,又因為消去,所以曲線和直線的普通方程分別是,;
(Ⅱ)將代入,整理得,則,因為,所以,所以.
考點:1.參數(shù)方程;2.等比中項;3.極坐標方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標方程:ρ=2sin(θ+),判斷直線和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l的參數(shù)方程: (t為參數(shù))和圓C的極坐標方程:ρ=2sin(θ+).
(1)將直線l的參數(shù)方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
(2)判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的極坐標方程為,直線的參數(shù)方程為( t為參數(shù),0≤).
(Ⅰ)把曲線C的極坐標方程化為直角坐標方程,并說明曲線C的形狀;
(Ⅱ)若直線經(jīng)過點(1,0),求直線被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的參數(shù)方程是 (φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是ρ=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為.
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設(shè)P為上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系中,圓的參數(shù)方程為參數(shù)).以為極點,軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓的極坐標方程;
(Ⅱ)直線的極坐標方程是,射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標方程為
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設(shè)直線與曲線C相交于M,N兩點,求M,N兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標系中,圓的極坐標方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系.
(Ⅰ)求圓的直角坐標方程;
(Ⅱ)若圓上的動點的直角坐標為,求的最大值,并寫出取得最大值時點P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知在直角坐標系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點,是圓錐曲線的左,右焦點.
(Ⅰ)以原點為極點、軸正半軸為極軸建立極坐標系,求經(jīng)過點且平行于直線的直線的極坐標方程;
(Ⅱ)在(I)的條件下,設(shè)直線與圓錐曲線交于兩點,求弦的長.

查看答案和解析>>

同步練習(xí)冊答案