已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為( t為參數(shù),0≤<).
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(Ⅱ)若直線經(jīng)過點(1,0),求直線被曲線C截得的線段AB的長.
(Ⅰ) ,拋物線;(Ⅱ)8
解析試題分析:(1)將已知極坐標(biāo)方程變形為,再兩邊同時乘以,利用
化為直角坐標(biāo)方程,并判斷曲線形狀;(2)由直線經(jīng)過點(1,0)和(0,1),確定傾斜角,從而確定參數(shù)方程,再將直線的參數(shù)方程代入曲線C的直角坐標(biāo)方程,得關(guān)于的一元二次方程,結(jié)合的幾何意義,線段AB的長,利用韋達定理求解.
試題解析:(1)曲線C的直角坐標(biāo)方程為,故曲線C是頂點為O(0,0),焦點為F(1,0)的拋物線;
(2)直線的參數(shù)方程為( t為參數(shù),0≤<).故l經(jīng)過點(0,1);若直線經(jīng)過點(1,0),則
直線的參數(shù)方程為(t為參數(shù))
代入,得
設(shè)A、B對應(yīng)的參數(shù)分別為,則
=8
考點:1、極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)換;2、直線的參數(shù)方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),點C的極坐標(biāo)為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
(2).試判斷直線l與圓C有位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,O為極點,半徑為2的圓C的圓心的極坐標(biāo)為.
(1)求圓C的極坐標(biāo)方程;
(2)P是圓C上一動點,點Q滿足3,以極點O為原點,以極軸為x軸正半軸建立直角坐標(biāo)系,求點Q的軌跡的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓,直線,以O(shè)為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(1)將圓C和直線方程化為極坐標(biāo)方程;
(2)P是上的點,射線OP交圓C于點R,又點Q在OP上且滿足,當(dāng)點P在上移動時,求點Q軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面直角坐標(biāo)系,以為極點, 軸的非負半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)為,曲線的極坐標(biāo)方程為
(1)寫出點的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(2)若為曲線上的動點,求中點到直線(為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),為直線與曲線的公共點. 以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求點的極坐標(biāo);
(Ⅱ)將曲線上所有點的縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變)后得到曲線,過點作直線,若直線被曲線截得的線段長為,求直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線過點P(-2,-4)的直線為參數(shù))與曲線C相交于點M,N兩點.
(Ⅰ)求曲線C和直線的普通方程;
(Ⅱ)若|PM|,|MN|,|PN |成等比數(shù)列,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓C的交點為O,P,與直線的交點為Q,求線段PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com