【題目】已知向量 =(cosωx,sinωx), =(cosωx, cosωx),其中ω>0,設(shè)函數(shù)f(x)= .
(1)若函數(shù)f(x)的最小正周期是π,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的圖象的一個對稱中心的橫坐標(biāo)為 ,求ω的最小值.
【答案】
(1)解:f(x)=cos2ωx+ sinωxcosωx= cos2ωx+ sin2ωx+ =sin(2ωx+ )+ .
∴T= =π,ω=1,
∴f(x)=sin(2x+ )+ .
令﹣ 2x+ ,解得 +kπ≤x≤ .
∴f(x)的單調(diào)遞增區(qū)間是[ +kπ, ],k∈Z
(2)解:∵函數(shù)f(x)的圖象的一個對稱中心的橫坐標(biāo)為 ,
∴sin( )=0,∴ =kπ,解得ω=3k﹣ .
∵ω>0,∴當(dāng)k=1時,ω取得最小值
【解析】(1)化簡f(x),利用周期公式求出ω得出f(x)的解析式,利用正弦函數(shù)的單調(diào)性列出不等式解出單調(diào)增區(qū)間;(2)利用正弦函數(shù)的性質(zhì)得出sin( )=0,解出ω.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù);
(2)設(shè)函數(shù),其中a∈(1,2),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)= (sinx+cosx+|sinx﹣cosx|)的值域是( )
A.[﹣1,1]
B.[﹣ , ]
C.[﹣ ,1]
D.[﹣1, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,離心率等于,它的一個短軸端點恰好是拋物線的焦點
(1)求橢圓的方程;
(2)已知、是橢圓上的兩點, , 是橢圓上位于直線兩側(cè)的動點.①若直線的斜率為,求四邊形面積的最大值;
②當(dāng), 運(yùn)動時,滿足,試問直線的斜率是否為定值,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)是棱上的點,當(dāng)平面時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,直線: ,圓: .
(Ⅰ)若,請判斷直線與圓的位置關(guān)系;
(Ⅱ)求直線傾斜角的取值范圍;
(Ⅲ)直線能否將圓分割成弧長的比值為的兩段圓。繛槭裁?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓: 上一點向軸作垂線,垂足為右焦點, 、分別為橢圓的左頂點和上頂點,且, .
(Ⅰ)求橢圓的方程;
(Ⅱ)若動直線與橢圓交于、兩點,且以為直徑的圓恒過坐標(biāo)原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com