根據(jù)如下樣本數(shù)據(jù)

3
4
5
6
7
8

4.0
2.5

0.5


 
得到的回歸方程為,則(   )
A. ,      B. ,     C. ,     D. , 
B

試題分析:依題意,畫散點圖知,兩個變量負相關(guān),所以.選B.的符號,容易題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

甲、乙、丙、三人參加奧運會射擊項目選拔賽,三人的平均成績和方差如表所示:從這三個人中選擇一人參加奧運會射擊項目比賽,最佳人選是( 。
平均環(huán)數(shù)8.98.98.2
方差s23.52.15.6
A.甲B.乙C.丙D.三人都可以

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對四組數(shù)據(jù)進行統(tǒng)計,獲得以下散點圖,關(guān)于其相關(guān)系數(shù)的比較,正確的是(   ).
A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

我市某高中的一個綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差(°C)
10
11
13
12
8
6
就診人數(shù)(個)
22
25
29
26
16
12
 
該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù): ;
.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

[2013·福建高考]已知x與y之間的幾組數(shù)據(jù)如下表:
x
1
2
3
4
5
6
y
0
2
1
3
3
4
假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為x+.若某同學根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是(  )
A. >b′,>a′        B. >b′,<a′
C. <b′,>a′        D. <b′,<a′

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某研究機構(gòu)對高三學生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù):










 
根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程中的的值為,則記憶力為的同學的判斷力約為        .
(附:線性回歸方程中,,其中、為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下表是某旅游區(qū)游客數(shù)量與平均氣溫的對比表:
平均氣溫(℃)
-1
4
10
13
18
26
數(shù)量(百個)
20
24
34
38
50
64
 
若已知游客數(shù)量與平均氣溫是線性相關(guān)的,則回歸方程為(   ).
A.=1.98x+22.13
B.=1.78x+20.13
C.=1.68x+18.73
D.=1.51x+15.73

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

隨機變量X的分布列為
X
1
2
4
P
0.5
0.2
0.3
則E(3X+4)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知回歸方程為=0.4x-0.8,則當x= 20時,y的估計值為        

查看答案和解析>>

同步練習冊答案