11.若函數(shù)f(x)=$\frac{sinx}{x+1}$,則f′(0)等于( 。
A.1B.0C.-1D.-2

分析 求函數(shù)的導數(shù),令x=0,即可.

解答 解:函數(shù)的導數(shù)f′(x)=$\frac{cosx(x+1)-sinx}{(x+1)^{2}}$,
則f′(0)=$\frac{cos0}{1}$=1,
故選:A

點評 本題主要考查函數(shù)的導數(shù)的計算,根據(jù)函數(shù)導數(shù)公式進行求解是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.過點P(1,2),并且在兩坐標軸上的截距相等的直線方程是( 。
A.x+y-3=0或x-2y=0B.x+y-3=0或2x-y=0
C.x-y+1=0或x+y-3=0D.x-y+1=0或2x-y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.執(zhí)行如圖的程序框圖.輸出的x的值是(  )
A.2B.14C.11D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.直線y=2b與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左支、右支分別交于B,C兩點,A為右頂點,O為坐標原點,若∠AOC=∠BOC,則該雙曲線的離心率為$\frac{\sqrt{19}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.命題“?x∈R,tanx≥0”的否定是?x∈R,tanx<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.橢圓7x2+3y2=21上一點到兩個焦點的距離之和為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設Sn為數(shù)列{an}的前n項和,a3=6且Sn+1=3Sn,則a1+a5等于( 。
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖,已知四邊形ABCD是圓內接四邊形,且∠BCD=120°,AD=2,AB=BC=1,現(xiàn)有以下結論:①B,D兩點間的距離為$\sqrt{3}$;②AD是該圓的一條直徑;③CD=$\frac{\sqrt{3}}{2}$;④四邊形ABCD的面積S=$\frac{3\sqrt{3}}{4}$.其中正確結論的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.F是拋物線y2=4x的焦點,P為拋物線上一點.若|PF|=3,則點P的縱坐標為(  )
A.±3B.$±\;2\sqrt{2}$C.±2D.±1

查看答案和解析>>

同步練習冊答案