已知拋物線,直線與E交于A、B兩點(diǎn),且,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明:為定值.

(1);(2)證明過程詳見解析.

解析試題分析:本題考查拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、向量的數(shù)量積等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì),考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,將直線與拋物線方程聯(lián)立,消去參數(shù),得到關(guān)于的方程,得到兩根之和兩根之積,設(shè)出點(diǎn)的坐標(biāo),代入到中,化簡(jiǎn)表達(dá)式,再將上述兩根之和兩根之積代入得出的值,從而得到拋物線的標(biāo)準(zhǔn)方程;第二問,先利用點(diǎn)的坐標(biāo)得出直線的斜率,再根據(jù)拋物線方程轉(zhuǎn)化參數(shù),得到的關(guān)系式,代入到所求證的式子中,將上一問中的兩根之和兩根之積代入,化簡(jiǎn)表達(dá)式得出常數(shù)即可.
試題解析:(Ⅰ)將代入,得.    2分
其中
設(shè),,則
,.          4分

由已知,,
所以拋物線的方程.          6分
(Ⅱ)由(Ⅰ)知,
,同理,     10分
所以.    12分
考點(diǎn):1.拋物線的標(biāo)準(zhǔn)方程;2.韋達(dá)定理;3.向量的數(shù)量積;4.直線的斜率公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)點(diǎn)、分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線、不重合),若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),使點(diǎn)、的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知是橢圓的右焦點(diǎn);圓軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

(1)求橢圓的離心率;
(2)設(shè)圓軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為的正方形(記為
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)點(diǎn)是直線軸的交點(diǎn),過點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在正方形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓C:,若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓C經(jīng)過點(diǎn)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段是橢圓過點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長(zhǎng)2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。

(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓錐曲線的兩個(gè)焦點(diǎn)坐標(biāo)是,且離心率為;
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線軸左邊部分,若直線與曲線相交于兩點(diǎn),求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點(diǎn),使,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點(diǎn)為,,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過的直線與橢圓交于、兩點(diǎn),問在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案