2.函數(shù)y=$\frac{x^2}{{{3^x}-1}}$的大致圖象是( 。
A.B.C.D.

分析 根據(jù)函數(shù)的定義域值域和函數(shù)值得變化趨勢(shì)即可判斷.

解答 解:方法一:因?yàn)楹瘮?shù)的定義域?yàn)閧x|x≠0},故排除A,
當(dāng)x→+∞時(shí),y=x2的變化趨勢(shì)不如y=3x-1的變換趨勢(shì)快,故y→0,故排除D,
當(dāng)x→-∞時(shí),y=x2>0,y=3x-1<0,故y=$\frac{x^2}{{{3^x}-1}}$<0,故排除A,C,D,
方法二,x<0時(shí),函數(shù)值為負(fù),函數(shù)圖象過(guò)第三象限,
故選:B

點(diǎn)評(píng) 本題考查了函數(shù)圖象的識(shí)別和應(yīng)用,關(guān)鍵是掌握函數(shù)的定義域值域和函數(shù)值得變化趨勢(shì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.用反證法證明$\sqrt{3}$,$\sqrt{5}$,$\sqrt{7}$不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,s=f(0)+f(1)+f(2)+…+f(2006)的值是(  )
A.2006B.2006$\frac{1}{2}$C.2007$\frac{1}{2}$D.2007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(-1,-1),則4$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角等于( 。
A.-$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若c>1,0<b<a<1,則( 。
A.ac<bcB.bac<abcC.alogbc<blogacD.logac<logbc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}$sin(${\frac{x}{2}$+$\frac{π}{4}}$)cos(${\frac{x}{2}$+$\frac{π}{4}}$)-sin(x+π).
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,求g(x)在[0,π]上的最小值;
(3)若f(α)=$\frac{8}{5}$,α∈(${\frac{π}{6}$,$\frac{π}{2}}$),求sin(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)x>0,y∈R,則“x>y”是“x>|y|”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知復(fù)數(shù)z滿(mǎn)足:zi=2+i(i是虛數(shù)單位),則z對(duì)應(yīng)的點(diǎn)在復(fù)平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系 xOy 中,離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)為A,且A到右準(zhǔn)線(xiàn)的距離為6,點(diǎn)P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,當(dāng)P、O、Q共線(xiàn)時(shí),直線(xiàn)PA,QA分別與y軸交于M,N兩點(diǎn),求證:$\overrightarrow{AM}$•$\overrightarrow{AN}$定值;
(3)設(shè)直線(xiàn)AP,AQ的斜率分別為k1,k2,當(dāng)k1•k2=-1時(shí),證明直線(xiàn)PQ經(jīng)過(guò)定點(diǎn)R.

查看答案和解析>>

同步練習(xí)冊(cè)答案