【題目】已知函數(shù)

1)求函數(shù)的對稱軸方程;

2)將函數(shù)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若, 分別是三個內角, 的對邊, ,且,求的值.

【答案】

【解析】試題分析:(1先運用二倍角公式將轉化為

的形式后再令,解出x即為的對稱軸方程;(2)由三角函數(shù)圖像平移變換、伸縮變換的方法求出的解析式,再由求出角B后,應用余弦定理即可求出b值.

試題解析:

解:()函數(shù)

, 解得,,

所以函數(shù)fx)的對稱軸方程為,,

)函數(shù)fx)的圖象各點縱坐標不變,橫坐標伸長為原來的2倍,得到函數(shù)的圖象,

再向左平移個單位,得到函數(shù)的圖象,

所以函數(shù)

ABC中, B=0,所以,又

所以,則

由余弦定理可知, ,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從裝有個不同小球的口袋中取出個小球(),共有種取法。在這種取法中,可以視作分為兩類:第一類是某指定的小球未被取到,共有種取法;第二類是某指定的小球被取到,共有種取法。顯然,即有等式:成立。試根據(jù)上述想法,下面式子(其中)應等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】紋樣是中國藝術寶庫的瑰寶,火紋是常見的一“種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為的正方形將其包含在內,并向該正方形內隨機投擲個點,已知恰有個點落在陰影部分,據(jù)此可估計陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足,且當,若對任意的,不等式恒成立,則實數(shù)的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)同時滿足:①在定義域內存在,使得成立;

②不等式的解集有且只有一個元素;數(shù)列的前項和為,,

(Ⅰ)求的表達式;

(Ⅱ)求數(shù)列的通項公式;

(Ⅲ)設,的前項和為,若對任意,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的最小正周期;

(2)常數(shù),若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;

(3)若函數(shù)的最大值為2,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)yf(x)的導函數(shù)yf′(x)的圖象則下面判斷正確的是(   )

A. (2,1)f(x)是增函數(shù) B. (1,3)f(x)是減函數(shù)

C. x2,f(x)取極大值 D. x4f(x)取極大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有1個紅球和2個白球,這3個球除顏色外完全相同,有放回地連續(xù)抽取2次,每次從中任意抽取出1個球,則:

(1)第一次取出白球,第二次取出紅球的概率;

(2)取出的2個球是11白的概率;

(3)取出的2個球中至少有1個白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎.抽獎方法是:從裝有個紅球個白球的甲箱與裝有個紅球,個白球的乙箱中,各隨機摸出個球,若模出的個球都是紅球則中獎,否則不中獎.

(1)用球的標號列出所有可能的模出結果;

(2)有人認為:兩個箱子中的紅球比白球多所以中獎的概率大于不中獎的概率,你認為正確嗎?請說明理由.

查看答案和解析>>

同步練習冊答案