分析 (1)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),先求出c=$\sqrt{2}$,由橢圓過點(diǎn)($\sqrt{2}$,1),得$\frac{2}{{a}^{2}}+\frac{1}{^{2}}$=1,由此能求出橢圓的標(biāo)準(zhǔn)方程.
(2)由$\overrightarrow{AP}=2\overrightarrow{PB}$,得$\left\{\begin{array}{l}{-{x}_{1}=2{x}_{2}}\\{1-{y}_{1}=2({y}_{2}-1)}\end{array}\right.$,設(shè)直線方程為y=kx+1,代入橢圓,得(2k2+1)x2+4kx-2=0,由此利用韋達(dá)定理,結(jié)合已知條件能求出△AOB的面積.
解答 解:(1)∵對(duì)稱中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)與圓x2+y2-2$\sqrt{2}$x=0的圓心重合,且橢圓過點(diǎn)($\sqrt{2}$,1),
∴設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),c為半焦距,c=$\sqrt{2}$,
∴a2-b2=2,①
由橢圓過點(diǎn)($\sqrt{2}$,1),得$\frac{2}{{a}^{2}}+\frac{1}{^{2}}$=1,②
由①②,得a2=4,b2=2,
∴所求橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.
(2)設(shè)A(x1,y1),B(x2,y2),由$\overrightarrow{AP}=2\overrightarrow{PB}$,得$\left\{\begin{array}{l}{-{x}_{1}=2{x}_{2}}\\{1-{y}_{1}=2({y}_{2}-1)}\end{array}\right.$,
設(shè)直線方程為y=kx+1,代入橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$,得(2k2+1)x2+4kx-2=0,
解得x=$\frac{-2k±\sqrt{8{k}^{2}+2}}{2{k}^{2}+1}$,設(shè)${x}_{1}=\frac{-2k-\sqrt{8{k}^{2}+2}}{2{k}^{2}+1}$,${x}_{2}=\frac{-2k+\sqrt{8{k}^{2}+2}}{2{k}^{2}+1}$,
則-$\frac{-2k-\sqrt{8{k}^{2}+2}}{2{k}^{2}+1}$=2•$\frac{-2k+\sqrt{8{k}^{2}+2}}{2{k}^{2}+1}$,解得${k}^{2}=\frac{1}{14}$,
∴△AOB的面積S=$\frac{1}{2}$|OP|•|x1-x2|=$\frac{1}{2}$•$\frac{2\sqrt{8{k}^{2}+2}}{2{k}^{2}+1}$=$\frac{\sqrt{126}}{8}$=$\frac{3\sqrt{14}}{8}$.
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查三角形面積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)、韋達(dá)定理、向量的數(shù)量積的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,1) | C. | (2,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ | B. | $\frac{{x}^{2}}{12}+\frac{{y}^{2}}{9}=1$ | C. | $\frac{{x}^{2}}{5}+\frac{{y}^{2}}{3}=1$ | D. | $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com