分析 (I)由2a=2$\sqrt{2}$,解得a=$\sqrt{2}$,設(shè)P(x0,y0),A1($-\sqrt{2}$,0),A2($\sqrt{2}$,0).由$\frac{{x}_{0}^{2}}{2}+\frac{{y}_{0}^{2}}{^{2}}$=1,可得$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-2}$=-$\frac{^{2}}{2}$.根據(jù)OM∥PA1,可得${k}_{OM}={k}_{P{A}_{1}}$,于是${k}_{P{A}_{2}}•{k}_{OM}$=${k}_{P{A}_{2}}•{k}_{P{A}_{1}}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-2}$=-$\frac{^{2}}{2}$=-$\frac{1}{2}$,解得b2.
(II)設(shè)直線l的方程為:y=k(x+1),A(x1,y1),B(x2,y2).與橢圓方程聯(lián)立化為:(2k2+1)x2+4k2x+2k2-2=0,利用根與系數(shù)的關(guān)系與中點(diǎn)坐標(biāo)公式可得線段AB的中點(diǎn)Q$(-\frac{2{k}^{2}}{2{k}^{2}+1},\frac{k}{2{k}^{2}+1})$,QN的方程為:y-$\frac{k}{2{k}^{2}+1}$=-$\frac{1}{k}$$(x+\frac{2{k}^{2}}{2{k}^{2}+1})$,可得N$(-\frac{{k}^{2}}{2{k}^{2}+1},0)$.根據(jù)$-\frac{1}{4}$<$-\frac{{k}^{2}}{2{k}^{2}+1}$<0,解得:0<2k2<1.利用弦長公式可得:|AB|=$\sqrt{2}$$(1+\frac{1}{2{k}^{2}+1})$,即可得出.
解答 解:(I)由2a=2$\sqrt{2}$,解得a=$\sqrt{2}$,設(shè)P(x0,y0),A1($-\sqrt{2}$,0),A2($\sqrt{2}$,0).
則$\frac{{x}_{0}^{2}}{2}+\frac{{y}_{0}^{2}}{^{2}}$=1,可得$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-2}$=-$\frac{^{2}}{2}$.
∵OM∥PA1,∴${k}_{OM}={k}_{P{A}_{1}}$,∴${k}_{P{A}_{2}}•{k}_{OM}$=${k}_{P{A}_{2}}•{k}_{P{A}_{1}}$=$\frac{{y}_{0}}{{x}_{0}+\sqrt{2}}$$•\frac{{y}_{0}}{{x}_{0}-\sqrt{2}}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-2}$=-$\frac{^{2}}{2}$=-$\frac{1}{2}$,
解得b2=1.
∴橢圓C的方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.
(II)設(shè)直線l的方程為:y=k(x+1),A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,化為:(2k2+1)x2+4k2x+2k2-2=0,
則x1+x2=$\frac{-4{k}^{2}}{2{k}^{2}+1}$,x1•x2=$\frac{2{k}^{2}-2}{2{k}^{2}+1}$,
∴y1+y2=k(x1+x2+2)=$\frac{2k}{2{k}^{2}+1}$,可得線段AB的中點(diǎn)Q$(-\frac{2{k}^{2}}{2{k}^{2}+1},\frac{k}{2{k}^{2}+1})$,
QN的方程為:y-$\frac{k}{2{k}^{2}+1}$=-$\frac{1}{k}$$(x+\frac{2{k}^{2}}{2{k}^{2}+1})$,∴N$(-\frac{{k}^{2}}{2{k}^{2}+1},0)$.
∵$-\frac{1}{4}$<$-\frac{{k}^{2}}{2{k}^{2}+1}$<0,解得:0<2k2<1.
∴|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{(-\frac{4{k}^{2}}{2{k}^{2}+1})^{2}-4×\frac{2{k}^{2}-2}{2{k}^{2}+1}}$=$\sqrt{2}$$(1+\frac{1}{2{k}^{2}+1})$,
∵$\frac{1}{2}<\frac{1}{2{k}^{2}+1}$<1,
∴|AB|∈$(\frac{3\sqrt{2}}{2},2\sqrt{2})$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、一元二次方程的根與系數(shù)的關(guān)系、不等式的性質(zhì)、垂直平分線的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{2}{5},\frac{2}{3})$ | B. | $(-\frac{2}{5},\frac{3}{2})$ | C. | $(-\frac{2}{5},\frac{1}{2})$ | D. | $(-∞,-\frac{2}{5})∪(\frac{2}{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\sqrt{5}$+1 | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | ${\;}^{\sqrt{2}}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com