2.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求B到平面CDE的距離
(2)在線段DE上是否存在一點(diǎn)F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,說明理由.

分析 (1)說明CD⊥AE,AE⊥ED,推出AE⊥平面CDE,然后求解B到平面CDE的距離.
(2)在線段DE上存在一點(diǎn)F,使AF∥平面BCE,$\frac{EF}{ED}$=$\frac{1}{3}$.設(shè)F為線段DE上的一點(diǎn),且$\frac{EF}{ED}$=$\frac{1}{3}$.過F作FM∥CD交CE于點(diǎn)M,則FM=$\frac{1}{3}CD$,
證明MF$\stackrel{∥}{=}$AB,說明四邊形ABMF是平行四邊形,即可說明AF∥平面BCE.

解答 (1)解:∵CD⊥平面ADE,∴CD⊥AE,又AE⊥ED,ED∩CD=D,∴AE⊥平面CDE,
又AB∥CD,∴B到平面CDE的距離為AE=3$\sqrt{3}$…(6分)
(2)解:在線段DE上存在一點(diǎn)F,使AF∥平面BCE,$\frac{EF}{ED}$=$\frac{1}{3}$.
下面給出證明:設(shè)F為線段DE上的一點(diǎn),且$\frac{EF}{ED}$=$\frac{1}{3}$.
過F作FM∥CD交CE于點(diǎn)M,則FM=$\frac{1}{3}CD$,
∵CD⊥平面ADE,AB⊥平面ADE,
∴CD∥AB.又CD=3AB,
∴MF$\stackrel{∥}{=}$AB,
∴四邊形ABMF是平行四邊形,
∴AF∥BM,又AF?平面BCE,BM?平面BCE.
∴AF∥平面BCE.…(12分)

點(diǎn)評 本題考查直線與平面平行,點(diǎn)、線、面距離的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)變量x,y滿足約束條件 $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+2y≥0}\end{array}\right.$,則z=x-2y的最大值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足$2\sqrt{3}acsinB={a^2}+{b^2}-{c^2}$.
(1)求角C的大。
(2)若bsin(π-A)=acosB,且$b=\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長軸長為2$\sqrt{2}$,P為橢圓C上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A2為橢圓C的右頂點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與直線OM的斜率之積為-$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓C于兩點(diǎn)A,B,線段AB的垂直平分線與x軸交于點(diǎn)N,N點(diǎn)的橫坐標(biāo)的取值范圍是$({-\frac{1}{4},0})$,求線段AB的長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如果a∩b=M,a∥平面β,則b與β的位置關(guān)系是平行或相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:指數(shù)函數(shù)y=(1-a)x是R上的增函數(shù),命題q:不等式ax2+2x-1>0有解.若命題p是真命題,命題q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.半徑為1的扇形AOB,∠AOB=120°,M,N分別為半徑OA,OB的中點(diǎn),P為弧AB上任意一點(diǎn),則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[$\frac{3}{8}$,$\frac{5}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若復(fù)數(shù)z=a-2i的實(shí)部與虛部相等,則實(shí)數(shù)a=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案