(本小題滿分12分)過(guò)點(diǎn)M(1,1)作直線與拋物線交于A、B兩點(diǎn),該拋物線在A、B兩點(diǎn)處的兩條切線交于點(diǎn)P。  (I)求點(diǎn)P的軌跡方程;  (II)求△ABP的面積的最小值。
(Ⅰ)   (Ⅱ) 時(shí),S有最小值1
(I)設(shè)直線AB方程為由,代入2分

則切線PA的方程為  ①
同理,切線PB的方程為  ②  …………5分
由①、②兩式得點(diǎn)P的坐標(biāo)為,于是,即點(diǎn)P軌跡的參數(shù)方程為消去參數(shù)k,得點(diǎn)P的軌跡方程為 ……7分
(II)由(I)知

點(diǎn)P到直線AB的距離 …………10分
△ABC的面積
當(dāng)時(shí),S有最小值1。 …12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知?jiǎng)訄A過(guò)定點(diǎn),且和定直線相切.(Ⅰ)求動(dòng)圓圓心的軌跡的方程;(Ⅱ)已知點(diǎn),過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),若為實(shí)數(shù)),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,通徑長(zhǎng)為1,且焦點(diǎn)與短軸兩端點(diǎn)構(gòu)成等邊三角形,(1)求橢圓的方程;(2)過(guò)點(diǎn)Q(-1,0)的直線l交橢圓于A,B兩點(diǎn),交直線x=-4于點(diǎn)E,點(diǎn)Q分 所成比為λ,點(diǎn)E分所成比為μ,求證λ+μ為定值,并計(jì)算出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的一組斜率為2的平行弦中點(diǎn)的軌跡是(     )
A.橢圓B.圓C.雙曲線D.射線(不含端點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線的方程為:
(1)若曲線是橢圓,求的取值范圍;
(2)若曲線是雙曲線,且有一條漸近線的傾斜角為,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的中心在原點(diǎn),其左焦點(diǎn)與拋物線的焦點(diǎn)重合,過(guò)的直線與橢圓交于AB兩點(diǎn),與拋物線交于CD兩點(diǎn).當(dāng)直線x軸垂直時(shí),
(Ⅰ)求橢圓的方程;
(II)求過(guò)點(diǎn)O、,并且與橢圓的左準(zhǔn)線相切的圓的方程;
(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)一束光線從點(diǎn)出發(fā),經(jīng)直線l:上一點(diǎn)反射后,恰好穿過(guò)點(diǎn).(1)求點(diǎn)的坐標(biāo);(2)求以、為焦點(diǎn)且過(guò)點(diǎn)的橢圓的方程; (3)設(shè)點(diǎn)是橢圓上除長(zhǎng)軸兩端點(diǎn)外的任意一點(diǎn),試問(wèn)在軸上是否存在兩定點(diǎn)、,使得直線、的斜率之積為定值?若存在,請(qǐng)求出定值,并求出所有滿足條件的定點(diǎn)、的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線M的中心在原點(diǎn),并以橢圓的焦點(diǎn)為焦點(diǎn),以拋物線的準(zhǔn)線為右準(zhǔn)線.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)設(shè)直線 與雙曲線M相交于A、B兩點(diǎn),O是原點(diǎn).
① 當(dāng)為何值時(shí),使得?
② 是否存在這樣的實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案