8.某幾何體的三視圖如圖所示,且該幾何體的體積是12,則正視圖中的x的值是( 。
A.3B.4C.9D.6

分析 由已知中的三視圖,可得該幾何體是一個以俯視圖為底面的四棱錐,高為x,根據(jù)已知中棱錐的體積構(gòu)造方程,解方程,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個以俯視圖為底面的四棱錐,高為x,
棱錐的底面是上底長2,下底長4,高為4的梯形,
故S=$\frac{1}{2}$×(2+4)×4=12,
又由該幾何體的體積是12,
∴12=$\frac{1}{3}$×12x,
即x=3,
故選:A.

點評 本題考查的知識點是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項和為Sn(n∈N*),且滿足:
①|(zhì)a1|≠|(zhì)a2|;
②r(n-p)Sn+1=(n2+n)an+(n2-n-2)a1,其中r,p∈R,且r≠0.
(1)求p的值;
(2)數(shù)列{an}能否是等比數(shù)列?請說明理由;
(3)求證:當(dāng)r=2時,數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)m,n∈R,若直線(m+1)x+(n+1)y-4=0與圓(x-2)2+(y-2)2=4相切,則m+n的取值范圍是x≥2+2$\sqrt{2}$或x≤2-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù),-π<α<0),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}-\frac{\sqrt{3}}{2}t}\\{y=5+\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2)射線θ=-$\frac{π}{4}$與曲線C1的交點為P,與曲線C2的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{y^2}{3}-{x^2}=1$的焦點坐標(biāo)是( 。
A.$(±\sqrt{2},0)$B.$(0,±\sqrt{2})$C.(0,±2)D.(±2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖:區(qū)域A是正方形OABC(含邊界),區(qū)域B是三角形ABC(含邊界).
(Ⅰ)向區(qū)域A隨機拋擲一粒黃豆,求黃豆落在區(qū)域B的概率;
(Ⅱ)若x,y分別表示甲、乙兩人各擲一次骰子所得的點數(shù),求點(x,y)落在區(qū)域B的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(0,1,1),$\overrightarrow$=(1,2,0),則同時與$\overrightarrow{a}$,$\overrightarrow$垂直的單位向量$\overrightarrow{e}$=( 。
A.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$B.$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$或$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$
C.$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$D.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$或$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x=log52,y=ln2,z=${2}^{\frac{1}{2}}$,則下列結(jié)論正確的是( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若(x+$\frac{1}{x}$)n展開式的二項式系數(shù)之和為64,則其常數(shù)項的值為20.

查看答案和解析>>

同步練習(xí)冊答案