點A、B、C、D均在同一球面上,其中是正三角形,AD平面ABC,AD=2AB=6,則該球的體積為 (      )
A.      B.     C.      D.
A

試題分析:由題意畫出幾何體的圖形如圖,
把A、B、C、D擴展為三棱柱,
上下底面中心連線的中點與A的距離為球的半徑,
AD=2AB=6,OE=3,△ABC是正三角形,
所以AE=
AO=
所求球的體積為
故選A.

點評:利用割補法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在四面體中,,,點,分別是,的中點.
 
(1)求證:平面⊥平面;
(2)若平面⊥平面,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖是某幾何體的三視圖,則該幾何體的體積為
A.1 B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

棱長為a的正方體中,連結(jié)相鄰面的中心,以這些線段為棱的八面體的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若球的表面積為,則該球的體積等于        。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個長方體共一頂點的三個面對角線長分別是,則的取值范圍為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體的棱長為,由它的互不相鄰的四個頂點連線所構(gòu)成的四面體的體積是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知球O的球面上四點A,B,C,D,DA平面ABC,ABBC,DA=AB=BC=,
則球O的表面積等于_____. 
  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是邊長為1的正方形,
(1)求證:平面      
(2)求四棱錐的體積

查看答案和解析>>

同步練習冊答案