分析 (1)利用奇函數(shù)的定義,及特殊點(diǎn),求函數(shù)f(x)的解析式;
(2)利用函數(shù)的單調(diào)性的定義證明求解即可.
解答 解:(1)∵f(x)是奇函數(shù),∴f(-x)=-f(x).
即$\frac{-ax+b}{{{x^2}+1}}=-\frac{ax+b}{{{x^2}+1}}$,-ax+b=-ax-b,∴b=0.
∴$f(x)=\frac{ax}{{{x^2}+1}}$,又$f(\frac{1}{2})=\frac{2}{5}$,∴$\frac{{\frac{1}{2}a}}{{\frac{1}{4}+1}}=\frac{2}{5}$,∴a=1,
∴$f(x)=\frac{x}{{{x^2}+1}}$.
(2)任取x1,x2∈(-1,1),且x1<x2,
$f({x_1})-f({x_2})=\frac{x_1}{{{x_1}^2+1}}-\frac{x_2}{{{x_2}^2+1}}=\frac{{({x_1}-{x_2})(1-{x_1}{x_2})}}{{({x_1}^2+1)({x_2}^2+1)}}$,
∵-1<x1<x2<1,∴-1<x1x2<1,
∴1-x1x2>0,又x1-x2<0,${x_1}^2+1>0$,${x_2}^2+1>0$,
∴f(x1)-f(x2)<0,f(x1)<f(x2),
∴f(x)在區(qū)間(-1,1)上是增函數(shù).
點(diǎn)評(píng) 本題考查函數(shù)的與方程的應(yīng)用,考查函數(shù)的奇偶性以及函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (4,+∞) | C. | (0,4) | D. | (-∞,0)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com