【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)當(dāng)時(shí), 有極小值,極小值為,無(wú)極大值;(Ⅱ) .

【解析】試題分析:)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值即可;
)得到, 設(shè)上的值域?yàn)锳,函數(shù)上的值域?yàn)锽,根據(jù)函數(shù)的單調(diào)性求出m的范圍即可

試題解析:

)依題意,

,

因?yàn)?/span>,故當(dāng)時(shí), ,當(dāng)時(shí), ,

故當(dāng)時(shí), 有極小值,極小值為,無(wú)極大值.

)當(dāng)=1時(shí),

因?yàn)?/span>, ,使得,

;設(shè)上的值域?yàn)?/span>A,

函數(shù)上的值域?yàn)?/span>B

當(dāng)時(shí), ,即函數(shù)上單調(diào)遞減,

,又.

i)當(dāng)時(shí), 上單調(diào)遞減,此時(shí)的值域?yàn)?/span>,

因?yàn)?/span>,又,故,即;

ii當(dāng)時(shí), 上單調(diào)遞增,此時(shí)的值域?yàn)?/span>,因?yàn)?/span>,又

,故

綜上所述,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x∈[1,2],x2≥a;命題q:x∈R,x2+2ax+2﹣a=0,若命題p∧q是真命題,則實(shí)數(shù)a的取值范圍是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn , 等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q(q≠0),且b2+S2=12,
(1)求{an}與{bn}的通項(xiàng)公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過(guò)300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級(jí)

級(jí)優(yōu)

級(jí)良

級(jí)輕度

污染

級(jí)中度

污染

級(jí)重度

污染

級(jí)嚴(yán)重污染

該社團(tuán)將該校區(qū)在2016100天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率

請(qǐng)估算2017年(以365天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿一天按一天計(jì)算);

用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在(0,50](50,100](100,150]的天數(shù)中各應(yīng)抽取幾天?

已知空氣質(zhì)量等級(jí)為1級(jí)時(shí)不需要凈化空氣,空氣質(zhì)量等級(jí)為2級(jí)時(shí)每天需凈化空氣的費(fèi)用為2000元,空氣質(zhì)量等級(jí)為3級(jí)時(shí)每天需凈化空氣的費(fèi)用為4000若在)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用為4000元的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,平面PAC⊥平面ABC,△ABC是以AC為斜邊的等腰直角三角形,E,F,O分別為PAPB,AC的中點(diǎn),AC=16,PAPC=10.

(Ⅰ)設(shè)GOC的中點(diǎn),證明:FG∥平面BOE

(Ⅱ)證明:在△ABO內(nèi)存在一點(diǎn)M,使FM⊥平面BOE,并求點(diǎn)MOA,OB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)求在點(diǎn)處的切線;

(2)討論的單調(diào)性;

(3)當(dāng) 時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某幾何體的三視圖中,俯視圖是邊長(zhǎng)為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,各側(cè)面是全等的等腰三角形,腰長(zhǎng)為4且頂角為30°,底面是正方形(如圖),在棱PB,PC上各有一點(diǎn)M,N,且四邊形AMND的周長(zhǎng)最小,點(diǎn)S從A出發(fā)依次沿四邊形AM,MN,ND運(yùn)動(dòng)至點(diǎn)D,記點(diǎn)S行進(jìn)的路程為x,棱錐S﹣ABCD的體積為V(x),則函數(shù)V(x)的圖象是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(π﹣2x),g(x)=2cos2x,則下列結(jié)論正確的是(
A.函數(shù)f(x)在區(qū)間[ ]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x= 對(duì)稱(chēng)
D.將函數(shù)f(x)的圖象向右平移 個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)g(x)的圖象

查看答案和解析>>

同步練習(xí)冊(cè)答案