A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 按照給出的定義對(duì)四個(gè)命題結(jié)合數(shù)列的知識(shí)逐一進(jìn)行判斷真假.對(duì)于①:列舉即可;對(duì)于②:需舉反例;對(duì)于③,可用數(shù)學(xué)歸納法加以證明;對(duì)于④:可由歸納推理判斷其正誤.
解答 解:對(duì)于①:當(dāng)a=5時(shí),x1=5,x2=$[\frac{5+[\frac{5}{5}]}{2}]$=3,x3=$[\frac{3+[\frac{5}{3}]}{2}]$=2,故①正確;
對(duì)于②:當(dāng)a=1時(shí),x2=$[\frac{1+[\frac{1}{1}]}{2}]$=1,x3=1,xk恒等于[$\sqrt{1}$]=1;
當(dāng)a=2時(shí),x1=2,x2=$[\frac{3+1}{2}]$=1,x3=$[\frac{1+[\frac{2}{1}]}{2}]$=1,
∴當(dāng)k≥2時(shí),恒有xk=[$\sqrt{2}$]=1;
當(dāng)a=3時(shí),x1=3,x2=2,x3=1,x4=2,x5=1,x6=2,x7=1,…,
此時(shí)數(shù)列{xn}除第一項(xiàng)外,從第二項(xiàng)起以后的項(xiàng)以2為周期重復(fù)出現(xiàn),
因此不存在正整數(shù)k,使得n≥k時(shí),總有xn=xk,故②不正確;
對(duì)于③:在xn+[$\frac{a}{{x}_{n}}$]中,當(dāng)$\frac{a}{{x}_{n}}$為正整數(shù)時(shí),xn+[$\frac{a}{{x}_{n}}$]=xn+$\frac{a}{{x}_{n}}$≥2$\sqrt{a}$,
∴xn+1=$[\frac{{x}_{n}+[\frac{a}{{x}_{n}}]}{2}]$≥[$\frac{2\sqrt{a}}{2}$]=[$\sqrt{a}$];
當(dāng)$\frac{a}{{x}_{n}}$不是正整數(shù)時(shí),令[$\frac{a}{{x}_{n}}$]=$\frac{a}{{x}_{n}}$-t,t為$\frac{a}{{x}_{n}}$的小數(shù)部分,
0<t<1,xn+1=$[\frac{{x}_{n}+[\frac{a}{{x}_{n}}]}{2}]$=$[\frac{{x}_{n}+[\frac{a}{{x}_{n}}]-t}{2}]$>[$\frac{2\sqrt{a}-t}{2}$]=[$\sqrt{a}$-$\frac{t}{2}$]=[$\sqrt{a}$],
∴xn+1≥[$\sqrt{a}$],∴xn≥[$\sqrt{a}$],∴xn>$\sqrt{a}$-1,故③正確;
由以上論證知,存在某個(gè)正整數(shù)k,若xk+1≥xk,
則當(dāng)n≥k時(shí),總有xn=[$\sqrt{a}$],故④正確.
故選:B
點(diǎn)評(píng) 本題主要考查了數(shù)列遞推公式的應(yīng)用,歸納推理和演繹推理的方法,直接證明和間接證明方法,數(shù)學(xué)歸納法的應(yīng)用,難度較大,需有較強(qiáng)的推理和思維能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{3}{4}$,$\frac{5}{4}$) | B. | ($\frac{2\sqrt{17}}{17}$,4) | C. | ($\frac{\sqrt{5}}{5}$,$\frac{3}{2}$) | D. | ($\frac{3\sqrt{5}}{10}$,$\frac{5}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(π)<f(3)<f($\sqrt{2}$) | B. | f(π)<f($\sqrt{2}$)<f(3) | C. | f($\sqrt{2}$)<f(3)<f(π) | D. | f($\sqrt{2}$)<f(π)<f(3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com