.陰影部分面積s不可用求出的是(    )
D
根據(jù)定積分s=∫ba[f(x)-g(x)]dx的幾何知,求函數(shù)f(x)與g(x)之間的陰影部分的面積,必須注意f(x)的圖象要在g(x)的圖象的上方即可.
解:定積分s=∫ba[f(x)-g(x)]dx的幾何知,
它是求函數(shù)f(x)與g(x)之間的陰影部分的面積,
必須注意f(x)的圖象要在g(x)的圖象的上方,
對(duì)照選項(xiàng)可知,f(x)的圖象不全在g(x)的圖象的上方
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)已知函數(shù)
(1)求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若,且對(duì)任意恒成立,求的最大值;
(3)當(dāng)時(shí),證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線與曲線相切(是自然對(duì)數(shù)的底數(shù)),則的值是
A.B.C.+1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導(dǎo)函數(shù)f′(x)的圖象如圖,則有以下幾個(gè)命題:

(1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
(2)f(x)只在x=-2處取得極大值;
(3)f(x)在x=-2與x=2處取得極大值;
(4)f(x)在x=0處取得極小值.
其中正確命題的個(gè)數(shù)為                                                               (  )
A.1B.2
C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)是函數(shù)的一個(gè)極值點(diǎn).
(1)求的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè),若存在,使得 成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分14分)
已知函數(shù)
(1)當(dāng)a=1時(shí),求的極小值;
(2)設(shè),x∈[-1,1],求的最大值F(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的是  (  )
A.函數(shù)在閉區(qū)間上的極大值一定比極小值大.
B.函數(shù)在閉區(qū)間上的最大值一定是極大值.
C.對(duì)于函數(shù),若,則無(wú)極值.
D.函數(shù)在區(qū)間上一定存在最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((本小題滿分13分)已知函數(shù),設(shè)。
(1)試確定的取值范圍,使得函數(shù)上為單調(diào)函數(shù);
(2)試判斷、的大小并說(shuō)明理由;
(3)求證:對(duì)于任意的,總存在,滿足,并確定這樣的的個(gè)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一個(gè)長(zhǎng)度為5 m的梯子貼靠在筆直的墻上,假設(shè)其下端沿地板以3 m/s的速度離開墻腳滑動(dòng),求當(dāng)其下端離開墻腳1.4 m時(shí),梯子上端下滑的速度為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案