分析 (1)根據(jù)絕對(duì)值不等式的性質(zhì)進(jìn)行轉(zhuǎn)化求解.
(2)利用1的代換,結(jié)合基本不等式的性質(zhì)進(jìn)行證明即可.
解答 解:(1)由絕對(duì)值不等式得|x-2|-|x+3|≥≤|x-2-(x+3)|=5,
若不等式|x-2|-|x+3|≥|m+1|有解,
則滿足|m+1|≤5,解得-6≤m≤4.
∴M=4.
(2)由(1)知正數(shù)a,b,c滿足足a+2b+c=4,即$\frac{1}{4}$[(a+b)+(b+c)]=1
∴$\frac{1}{a+b}$+$\frac{1}{b+c}$=$\frac{1}{4}$[(a+b)+(b+c)]($\frac{1}{a+b}$+$\frac{1}{b+c}$)=$\frac{1}{4}$(1+1+$\frac{b+c}{a+b}$+$\frac{a+b}{b+c}$)≥$\frac{1}{4}$(2+2$\sqrt{\frac{b+c}{a+b}•\frac{a+b}{b+c}}$)≥$\frac{1}{4}$×4=1,
當(dāng)且僅當(dāng)$\frac{b+c}{a+b}$=$\frac{a+b}{b+c}$即a+b=b+c=2,即a=c,a+b=2時(shí),取等號(hào).
∴$\frac{1}{a+b}$+$\frac{1}{b+c}$≥1成立.
點(diǎn)評(píng) 本題主要考查不等式的求解和應(yīng)用,根據(jù)絕對(duì)值不等式的性質(zhì)以及基本不等式的應(yīng)用,利用1的代換是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
感染 | 未感染 | 總計(jì) | |
服用 | 10 | 40 | 50 |
未服用 | 20 | 30 | 50 |
總計(jì) | 30 | 70 | 100 |
P(K2>k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
A. | 在犯錯(cuò)誤的概率不超5%過(guò)的前提下,認(rèn)為“小動(dòng)物是否被感染與有沒(méi)有服用疫苗有關(guān)” | |
B. | 在犯錯(cuò)誤的概率不超5%過(guò)的前提下,認(rèn)為“小動(dòng)物是否被感染與有沒(méi)有服用疫苗無(wú)關(guān)” | |
C. | 有97.5%的把握認(rèn)為“小動(dòng)物是否被感染與有沒(méi)有服用疫苗有關(guān)” | |
D. | 有97.5%的把握認(rèn)為“小動(dòng)物是否被感染與有沒(méi)有服用疫苗無(wú)關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a>b>c | C. | b<a<c | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | $\frac{1}{2}$ | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com