19.已知圓的一般方程x2+y2-4x-2y-5=0,其半徑是$\sqrt{10}$.

分析 將一般方程化為標準方程得出半徑.

解答 解:圓的標準方程為(x-2)2+(y-1)2=10.
∴圓的半徑為$\sqrt{10}$.
故答案為$\sqrt{10}$.

點評 本題考查了圓的一般方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知2a=3b=k(k≠1),且2a+b=2ab,則實數(shù)k的值為( 。
A.18B.18 或-18C.$3\sqrt{2}$或 $-3\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的中心在坐標原點,左、右焦點分別為F1,F(xiàn)2,P為橢圓C上的動點,△PF1F2的面積最大值為$\sqrt{3}$,以原點為圓心,橢圓短半軸長為半徑的圓與直線y=$\sqrt{3}$(x+2)相切.
(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2M⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.用反證法證明命題“設(shè)a,b為實數(shù),則方程x3+ax2+b=0至少有一個實根”時,要做的假設(shè)是( 。
A.方程x3+ax2+b=0至多有一個實根B.方程x3+ax2+b=0沒有實根
C.方程x3+ax2+b=0至多有兩個實根D.方程x3+ax2+b=0恰好有兩個實根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,F(xiàn)1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,|F1F2|=2$\sqrt{3}$,|DE|=$\sqrt{5}$,若點M(x0,y0)在橢圓C上,則點N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}$)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的標準方程;
(2)試探討△AOB的面積S是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標系xOy中,動點P到定點F(1,0)的距離和它到定直線x=2的距離比是$\frac{\sqrt{2}}{2}$.
(1)求動點P的軌跡C的方程;
(2)設(shè)過點Q($\frac{\sqrt{2}}{3}$,0)的直線l與曲線C交于點M,N,求證:點A($\sqrt{2}$,0)在以MN為直經(jīng)的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=2sin(2x-$\frac{π}{4}$)的圖象向左平移$\frac{π}{4}$個單位,得到函數(shù)g(x)的圖象,則g(0)=( 。
A.$\sqrt{2}$B.2C.0D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{6}sin\frac{x}{2}cos\frac{x}{2}$+$\sqrt{2}{cos^2}\frac{x}{2}$
(1)將函數(shù)f(x)化簡成Asin(ωx+φ)+B(A>0,φ>0,φ∈[0,2π))的形式;
(2)求f(x)的單調(diào)遞減區(qū)間,并指出函數(shù)|f(x)|的最小正周期;
(3)求函數(shù)f(x)在[$\frac{π}{4}$,$\frac{7π}{6}}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=2x3-x2+m是[0,2a]上“雙中值函數(shù)”,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{8}$,$\frac{1}{4}$)B.($\frac{1}{12}$,$\frac{1}{4}$)C.($\frac{1}{12}$,$\frac{1}{8}$)D.($\frac{1}{8}$,1)

查看答案和解析>>

同步練習(xí)冊答案