8.已知函數(shù)f(x)=$\sqrt{6}sin\frac{x}{2}cos\frac{x}{2}$+$\sqrt{2}{cos^2}\frac{x}{2}$
(1)將函數(shù)f(x)化簡(jiǎn)成Asin(ωx+φ)+B(A>0,φ>0,φ∈[0,2π))的形式;
(2)求f(x)的單調(diào)遞減區(qū)間,并指出函數(shù)|f(x)|的最小正周期;
(3)求函數(shù)f(x)在[$\frac{π}{4}$,$\frac{7π}{6}}$]上的最大值和最小值.

分析 (1)利用二倍角公式以及兩角和與差正弦函數(shù),化簡(jiǎn)求解即可.
(2)利用正弦函數(shù)的單調(diào)性化簡(jiǎn)求解單調(diào)區(qū)間,然后求解函數(shù)的周期.
(3)通過(guò)角的范圍,求出相位的范圍,利用正弦函數(shù)的最值求解即可.

解答 解:(1)$f(x)=\frac{{\sqrt{6}}}{2}sinx+\sqrt{2}(\frac{1+cosx}{2})$=$\sqrt{2}(\frac{{\sqrt{3}}}{2}sinx+\frac{1}{2}cosx)+\frac{{\sqrt{2}}}{2}$=$\sqrt{2}sin(x+\frac{π}{6})+\frac{{\sqrt{2}}}{2}$
(2)令$2kπ+\frac{π}{2}≤x+\frac{π}{6}≤2kπ+\frac{3π}{2}$,
解得$2kπ+\frac{π}{3}≤x≤2kπ+\frac{4π}{3}$,
∴f(x)單調(diào)遞減區(qū)間為$[{2kπ+\frac{π}{3},2kπ+\frac{4π}{3}}]$,k∈Z.
∵f(x)的最小正周期為2π,
∴|f(x)|的最小正周期為2π(注意,因?yàn)樯弦屏耍詜f(x)|周期沒(méi)有改變)
(3)由$\frac{π}{4}≤x≤\frac{7π}{6}$得$\frac{5π}{12}≤x+\frac{π}{6}≤\frac{4π}{3}$,
∴$-\frac{{\sqrt{3}}}{2}≤sin({x+\frac{π}{6}})≤1$
故當(dāng)x=$\frac{7π}{6}$時(shí),f(x)有最小值$\frac{{\sqrt{2}-\sqrt{6}}}{2}$;
當(dāng)x=$\frac{π}{3}$時(shí),f(x)有最大值$\frac{{3\sqrt{2}}}{2}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),正弦函數(shù)的最值以及單調(diào)性三角函數(shù)的周期的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知$|\overrightarrow a|$=1,$|\overrightarrow b|$=2,$\overrightarrow a$與$\overrightarrow b$的夾角為60°.求:
(1)$|\overrightarrow a+\overrightarrow b|$,$|\overrightarrow a-\overrightarrow b|$
(2)$\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知圓的一般方程x2+y2-4x-2y-5=0,其半徑是$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)=|x•ex|,又g(x)=f2(x)+tf(x)(t∈R),若滿足g(x)=-1的x有四個(gè),則t的取值范圍為( 。
A.(-∞,-$\frac{{e}^{2}+1}{e}$)B.($\frac{{e}^{2}+1}{e}$,+∞)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.“e是無(wú)限不循環(huán)小數(shù),所以e為無(wú)理數(shù).”該命題是演繹推理中的三段論推理,其中大前提是( 。
A.無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù)B.有限小數(shù)或有限循環(huán)小數(shù)為有理數(shù)
C.無(wú)限不循環(huán)小數(shù)是無(wú)理數(shù)D.無(wú)限小數(shù)為無(wú)理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.某電子商務(wù)公司對(duì)1000名網(wǎng)絡(luò)購(gòu)物者2015年度的消費(fèi)情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)消費(fèi)金額(單位:萬(wàn)元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.在這些購(gòu)物者中,消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購(gòu)物者的人數(shù)為600.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.滕州市正在積極創(chuàng)建國(guó)家森林城市,為加快生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費(fèi)用為x億元,其中用于風(fēng)景區(qū)改造的為y億元.我市決定制定生態(tài)環(huán)境改造投資方案,該方案要求同時(shí)具備下列兩個(gè)條件:①每年用于風(fēng)景區(qū)改造費(fèi)用隨每年改造生態(tài)環(huán)境總費(fèi)用增加而增加;②每年用于風(fēng)景區(qū)改造費(fèi)用不得低于每年改造生態(tài)環(huán)境總費(fèi)用的15%,但不得高于每年改造生態(tài)環(huán)境總費(fèi)用的25%.若每年改造生態(tài)環(huán)境的總費(fèi)用至少1億元,至多4億元,請(qǐng)你分析能否采用函數(shù)模型y=$\frac{1}{100}$(x3+4x+16)作為生態(tài)環(huán)境改造投資方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F2的直線交雙曲線于A,B兩點(diǎn),連結(jié)AF1,BF1,若|AB|=|BF1|,且∠ABF1=90°,則雙曲線的離心率為( 。
A.5-2$\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.6-3$\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.用反證法證明某命題時(shí),對(duì)結(jié)論“自然數(shù)a,b,c至少有1個(gè)奇數(shù)”的正確假設(shè)為“假設(shè)自然數(shù)a,b,c沒(méi)有奇數(shù)或全是偶數(shù)”

查看答案和解析>>

同步練習(xí)冊(cè)答案