【題目】已知四個命題:

①如果向量共線,則

的充分不必要條件;

③命題的否定是,

④“指數(shù)函數(shù)是增函數(shù),而是指數(shù)函數(shù),所以是增函數(shù)”此三段論大前提錯誤,但推理形式是正確的.

以上命題正確的個數(shù)為( )

A.0B.1C.2D.3

【答案】B

【解析】

由向量共線定理可判斷;由充分必要條件的定義可判斷;由特稱命題的否定為全稱命題,可判斷;由指數(shù)函數(shù)的單調(diào)性可判斷

,如果向量共線,可得xy,不一定,故錯誤;

,|x|33x3x3不能推得|x|3,但|x|3能推得x3

x3|x|3的必要不充分條件,故錯誤;

,命題px002),的否定

是¬px02),x22x30,故錯誤;

,“指數(shù)函數(shù)yax是增函數(shù),而是指數(shù)函數(shù),所以是增函數(shù)”

由于a1時,yax為增函數(shù),0a1時,yax為減函數(shù),此三段論大前提錯誤,但推理形式是正確的,故正確.其中正確個數(shù)為1

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為在下一年續(xù)保時,實行的是費率浮動機制保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系發(fā)生交通事故的次數(shù)越多費率也就越高,具體浮動情況如下表(其中浮動比率是在基準保費上上下浮動):

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮

某機構(gòu)為了研究某一品牌普通座以下私家車的投保情況隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格

類型

數(shù)量

(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時保費的平均值(精確到

(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車且將下一年的交強險保費高于基準保費的車輛記為事故車.假設(shè)購進一輛事故車虧損,一輛非事故車盈利且各種投保類型車的頻率與上述機構(gòu)調(diào)查的頻率一致.試完成下列問題:

①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內(nèi)隨機挑選輛車,求這輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進輛車車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答下列各題:

(1)已知扇形的周長為10cm,面積為4cm2,求扇形圓心角的弧度數(shù).

(2)已知一扇形的圓心角是72°,半徑等于20cm,求扇形的面積.

(3)已知一扇形的周長為40cm,求它的半徑和圓心角取什么值時,才能使扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)tan(ωxφ)(ω>0,0<φ<),已知函數(shù)yf(x)的圖象與x軸相鄰兩個交點的距離為,且圖象關(guān)于點M(0)對稱.

(1)f(x)的解析式;

(2)f(x)的單調(diào)區(qū)間;

(3)求不等式-1≤f(x)≤的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線,在圓內(nèi)任取一點,則到直線的距離大于2的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù),,,的平均值為2,方差為1,則數(shù)據(jù),,相對于原數(shù)據(jù)( )

A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos xC2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù).

(Ⅰ)求的最小值及取得最小值時的取值范圍;

(Ⅱ)若集合,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選題)某工廠八年來某種產(chǎn)品總產(chǎn)量y(即前x年年產(chǎn)量之和)與時間x(年)的函數(shù)關(guān)系如圖,下列五種說法中正確的是(

A.前三年中,總產(chǎn)量的增長速度越來越快

B.前三年中,總產(chǎn)量的增長速度越來越慢

C.前三年中,年產(chǎn)量的增長速度越來越慢

D.第三年后,這種產(chǎn)品停止生產(chǎn)

E.第三年后,年產(chǎn)量保持不變

查看答案和解析>>

同步練習(xí)冊答案