【題目】已知圓C和y軸相切,圓心在直線x﹣3y=0上,且被直線y=x截得的弦長為 ,求圓C的方程.

【答案】解:設(shè)圓心為(3t,t),半徑為r=|3t|,則圓心到直線y=x的距離d= =| t|,
由勾股定理及垂徑定理得:( 2=r2﹣d2 , 即9t2﹣2t2=7,
解得:t=±1,
∴圓心坐標(biāo)為(3,1),半徑為3;圓心坐標(biāo)為(﹣3,﹣1),半徑為3,
則(x﹣3)2+(y﹣1)2=9或(x+3)2+(y+1)2=9
【解析】由圓心在直線x﹣3y=0上,設(shè)出圓心坐標(biāo),再根據(jù)圓與y軸相切,得到圓心到y(tǒng)軸的距離即圓心橫坐標(biāo)的絕對值等于圓的半徑,表示出半徑r,然后過圓心作出弦的垂線,根據(jù)垂徑定理得到垂足為弦的中點,利用點到直線的距離公式求出圓心到直線y=x的距離d,由弦長的一半,圓的半徑r及表示出的d利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,從而得到圓心坐標(biāo)和半徑,根據(jù)圓心和半徑寫出圓的方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)+(4﹣2a)x+2(x∈[1,2]),求函數(shù)g(x)的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)g(x)=x2﹣2x+1+mlnx,(m∈R).
(1)當(dāng)m=1時,求函數(shù)y=g(x)在點(1,0)處的切線方程;
(2)當(dāng)m=﹣12時,求f(x)的極小值;
(3)若函數(shù)y=g(x)在x∈( ,+∞)上的兩個不同的數(shù)a,b(a<b)處取得極值,記{x}表示大于x的最小整數(shù),求{g(a)}﹣{g(b)}的值(ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點,例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點,若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實數(shù)m的取值范圍是(
A.[﹣1,1]
B.(0,2)
C.[﹣2,2]
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為(
A.3+2
B.3+2
C.7
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的點.
(1)求證:平面EAC⊥平面PBC;
(2)若E是PB的中點,求二面角P﹣AC﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,分別是橢圓的左、右焦點.

(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標(biāo);

(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y=3cosx的圖象,只需將函數(shù)y=3sin(2x﹣ )的圖象上所有點的(
A.橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),所得圖象再向左平移 個單位長度
B.橫坐標(biāo)縮短到原來的 (縱坐標(biāo)不變),所得圖象再向右平移 個單位長度
C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向左平移 個單位長度
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向右平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α為△ABC的內(nèi)角,且tanα=﹣ ,計算:
(1)
(2)sin( +α)﹣cos( ﹣α).

查看答案和解析>>

同步練習(xí)冊答案