已知,不等式的解集是,
(Ⅰ) 求的解析式;
(Ⅱ) 若對于任意,不等式恒成立,求t的取值范圍.

(Ⅰ)    (Ⅱ)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)滿足.
(1)設,求的上的值域;
(2)設,在上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般
情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千
米)的函數(shù).當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度
為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:
時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),
單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知奇函數(shù)f(x)=
(1)求實數(shù)m的值,并在給出的直角坐標系中畫出y=f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.(本小題滿分12分)
某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過500件.
(1)設一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式;
(2)當銷售商一次訂購多少件時,該服裝廠獲得的利潤最大,最大利潤是多少元?
(服裝廠售出一件服裝的利潤=實際出廠單價成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)求函數(shù)的零點;
(2)在坐標系中畫出函數(shù)的圖象;
(3)討論方程解的情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)滿足:①定義域是; ②當時,;
③對任意,總有
(1)求出的值;
(2)判斷函數(shù)的單調(diào)性,并用單調(diào)性的定義證明你的結論;
(3)寫出一個滿足上述條件的具體函數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


若二次項系數(shù)為a的二次函數(shù)同時滿足如下三個條件,求的解析式.
;②;③對任意實數(shù),都有恒成立.
(文) 設二次函數(shù)滿足:(1),(2)被軸截得的弦長為2,(3)在軸截距為6,求此函數(shù)解析式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值是.
(1)求的解析式;
(2)設函數(shù)上的最小值為,求的表達式.

查看答案和解析>>

同步練習冊答案