【題目】如圖,長(zhǎng)方體的底面是正方形,點(diǎn)在棱上,.

1)證明:平面;

2)若,求二面角正弦值.

【答案】1)證明見(jiàn)解析(2

【解析】

1)根據(jù)長(zhǎng)方體性質(zhì)可知平面,從而,由題意,即可由線面垂直的判定定理證明平面;

2)由題意,設(shè),建立空間直角坐標(biāo)系,即可寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),求得平面和平面的法向量,即可由兩個(gè)平面的法向量求得二面角夾角的余弦值,再由同角三角函數(shù)關(guān)系式即可求得二面角的正弦值.

1)由已知得,平面,平面,

.

,且,

所以平面.

2)由(1)知.由題設(shè)知,所以,

. 設(shè),以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系

,,,,,.

設(shè)平面的法向量為,則.

所以可取.

設(shè)平面的法向量為,則

所以可取.

于是.

由同角三角函數(shù)關(guān)系式可得二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過(guò)點(diǎn)且與垂直,垂足為P.

1)當(dāng)時(shí),求l的極坐標(biāo)方程;

2)當(dāng)MC上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】半圓的直徑的兩端點(diǎn)為,點(diǎn)在半圓及直徑上運(yùn)動(dòng),若將點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)得到點(diǎn),記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若稱封閉曲線上任意兩點(diǎn)距離的最大值為該曲線的直徑,求曲線直徑”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且,,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求的普通方程及的直角坐標(biāo)方程;

(2)若曲線與曲線分別交于點(diǎn),,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的底面是正方形,點(diǎn)在棱上,.

1)證明:平面

2)若,求二面角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)為了調(diào)查該校學(xué)生性別與身高的關(guān)系,對(duì)該校1000名學(xué)生按照的比例進(jìn)行抽樣調(diào)查,得到身高頻數(shù)分布表如下:

男生身高頻率分布表

男生身高

(單位:厘米)

頻數(shù)

7

10

19

18

4

2

女生身高頻數(shù)分布表

女生身高

(單位:厘米)

頻數(shù)

3

10

15

6

3

3

1)估計(jì)這1000名學(xué)生中女生的人數(shù);

2)估計(jì)這1000名學(xué)生中身高在的概率;

3)在樣本中,從身高在的女生中任取3名女生進(jìn)行調(diào)查,設(shè)表示所選3名學(xué)生中身高在的人數(shù),求的分布列和數(shù)學(xué)期望.(身高單位:厘米)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,橢圓的離心率為,直線交于,兩點(diǎn),長(zhǎng)度的最大值為4.

1)求的方程;

2)直線軸的交點(diǎn)為,當(dāng)直線變化(不與軸重合)時(shí),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九世紀(jì)末,法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”、“隨機(jī)端點(diǎn)”、“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)A為圓O上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn)B,連接AB,所得弦長(zhǎng)AB大于圓O的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知直線l過(guò)點(diǎn)P22.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρρcos2θ4cosθ0.

1)求C的直角坐標(biāo)方程;

2)若lC交于A,B兩點(diǎn),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案