【題目】如圖,長(zhǎng)方體的底面是正方形,點(diǎn)在棱上,.

1)證明:平面;

2)若,求二面角正弦值.

【答案】1)證明見(jiàn)解析(2

【解析】

1)根據(jù)長(zhǎng)方體性質(zhì)可知平面,從而,由題意,即可由線面垂直的判定定理證明平面

2)由題意,設(shè),建立空間直角坐標(biāo)系,即可寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),求得平面和平面的法向量,即可由兩個(gè)平面的法向量求得二面角夾角的余弦值,再由同角三角函數(shù)關(guān)系式即可求得二面角的正弦值.

1)由已知得,平面,平面,

.

,且,

所以平面.

2)由(1)知.由題設(shè)知,所以,

,. 設(shè),以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系

,,,,.

設(shè)平面的法向量為,則.

所以可取.

設(shè)平面的法向量為,則

所以可取.

于是.

由同角三角函數(shù)關(guān)系式可得二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)對(duì)某市工薪階層關(guān)于樓市限購(gòu)令的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50,他們?cè)率杖氲念l數(shù)分布及對(duì)樓市限購(gòu)令贊成人數(shù)如表:

月收入(單位百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

()由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表并問(wèn)是否有99%的把握認(rèn)為月收入以5500為分界點(diǎn)對(duì)樓市限購(gòu)令的態(tài)度有差異;

月收入低于55百元的人數(shù)

月收入不低于55百元的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

()若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機(jī)抽取6人進(jìn)行追蹤調(diào)查,并給予其中3紅包獎(jiǎng)勵(lì),求收到紅包獎(jiǎng)勵(lì)的3人中至少有1人收入在[15,25)的概率.

參考公式:K2,其中n=a+b+c+d.

參考數(shù)據(jù):

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某地區(qū)的微信健步走活動(dòng)情況,現(xiàn)用分層抽樣的方法從中抽取老、中、青三個(gè)年齡段人員進(jìn)行問(wèn)卷調(diào)查.已知抽取的樣本同時(shí)滿足以下三個(gè)條件:

i)老年人的人數(shù)多于中年人的人數(shù);

ii)中年人的人數(shù)多于青年人的人數(shù);

iii)青年人的人數(shù)的兩倍多于老年人的人數(shù).

①若青年人的人數(shù)為4,則中年人的人數(shù)的最大值為___________.

②抽取的總?cè)藬?shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求不等式的解集;

2)若的圖像與軸圍成直角三角形,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓上,過(guò)點(diǎn)軸于點(diǎn)

(1)求線段的中點(diǎn)的軌跡的方程

(2)設(shè)、兩點(diǎn)在(1)中軌跡上,點(diǎn),兩直線的斜率之積為,且(1)中軌跡上存在點(diǎn)滿足,當(dāng)面積最小時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的底面是正方形,點(diǎn)在棱上,.

1)證明:平面

2)若,求二面角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),且的范圍是,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)mx-lnx-1m為常數(shù)).

1)若函數(shù)f(x)恰有1個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;

2)若不等式mx-exf(x)+a對(duì)正數(shù)x恒成立,求實(shí)數(shù)a的最小整數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案