精英家教網 > 高中數學 > 題目詳情

【題目】若函數f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 ,函數f'(x)的圖象的一個對稱中心是 ,則f(x)的最小正周期是(
A.
B.
C.π
D.2π

【答案】C
【解析】解:∵函數f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 , ∴f(0)=f( ),即b=asin(ω )+bcos(ω )=a,∴f(x)=asinωx+acosωx= asin(ωx+ ).
又函數f'′(x)= aωcos(ωx+ )的圖象的一個對稱中心是 ,
aωcos(ω + )=0,∴ω + =kπ+ ,k∈Z,即ω=8k+2,
故取ω=2,則f(x)的最小正周期是 =π,
故選:C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx,g(x)= x2﹣bx(b為常數).
(1)函數f(x)的圖象在點(1,f(1))處的切線與函數g(x)的圖象相切,求實數b的值;
(2)若函數h(x)=f(x)+g(x)在定義域上存在單調減區(qū)間,求實數b的取值范圍;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個頂點為,焦點在軸上,離心率為

(1)求橢圓的方程;

(2)若橢圓與直線相交于不同的兩點,當時,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓 + =1(a>b>0)的離心率為 ,C為橢圓上位于第一象限內的一點.

(1)若點C的坐標為(2, ),求a,b的值;
(2)設A為橢圓的左頂點,B為橢圓上一點,且 = ,求直線AB的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設x,y,z均為正實數,且xyz=1,求證: + + ≥xy+yz+zx.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著生活水平和消費觀念的轉變,“三品一標”(無公害農產品、綠色食品、有機食品和農產品地理標志)已成為不少人的選擇,為此某品牌植物油企業(yè)成立了有機食品快速檢測室,假設該品牌植物油每瓶含有機物A的概率為p(0<p<1),需要通過抽取少量油樣化驗來確定該瓶油中是否含有有機物A,若化驗結果呈陽性則含A,呈陰性則不含A.若多瓶該種植物油檢驗時,可逐個抽樣化驗,也可將若干瓶植物油的油樣混在一起化驗,僅當至少有一瓶油含有有機物A時混合油樣呈陽性,若混合油樣呈陽性,則該組植物油必須每瓶重新抽取油樣并全部逐個化驗.
(1)若 ,試求3瓶該植物油混合油樣呈陽性的概率;
(2)現有4瓶該種植物油需要化驗,有以下兩種方案: 方案一:均分成兩組化驗;方案二:混在一起化驗;請問哪種方案更適合(即化驗次數的期望值更。,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)設為橢圓上任一點, 為其右焦點,點滿足.

①證明: 為定值;

②設直線與橢圓有兩個不同的交點,與軸交于點.若成等差數列,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產品層出不窮.某公司隨即抽取人對共享產品是否對日常生活有益進行了問卷調查,并對參與調查的人中的性別以及意見進行了分類,得到的數據如下表所示:

總計

認為共享產品對生活有益

認為共享產品對生活無益

總計

(1)根據表中的數據,能否在犯錯誤的概率不超過的前提下,認為對共享產品的態(tài)度與性別有關系?

(2)現按照分層抽樣從認為共享產品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參與公式:

臨界值表:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},則R(A∩B)=(
A.[0,
B.(﹣∞,0)∪[ ,+∞)
C.(0,
D.(﹣∞,0]∪[ ,+∞)

查看答案和解析>>

同步練習冊答案