分析:(I)因?yàn)榍在p
n處的切線與AA
n平行,所以6x
n=
,由此可知2x
n=a
n+2.
(Ⅱ)由題意知
xn+1=[3(xn-1)2-1+1]+1,所以x
n+1=t(x
n-1)
2+1,log
t(x
n+1-1)+1=2[log
t(x
n-1)+1],由此可知{log
t(x
n-1)+1}是一個(gè)公比為2的等比數(shù)列
(III)由題設(shè)知:log
t(x
n-1)+1=(log
t2+1)2
n-1,所以
xn=1+(2t)2n-1,從而
an=2xn-2=(2t)2n-1,由此可求出t的范圍.
解答:解:(I)因?yàn)榍在p
n處的切線與AA
n平行
∴6x
n=
?2x
n=a
n+2
(Ⅱ)∵
xn+1=[f(xn-1)+1]+1∴
xn+1=[3(xn-1)2-1+1]+1,?x
n+1=t(x
n-1)
2+1
從而log
t(x
n+1-1)=1+2log
t(x
n-1)?log
t(x
n+1-1)+1=2[log
t(x
n-1)+1]
∴{log
t(x
n-1)+1}是一個(gè)公比為2的等比數(shù)列
(III)由(II)知:log
t(x
n-1)+1=(log
t2+1)2
n-1
∴
xn=1+(2t)2n-1,從而
an=2xn-2=(2t)2n-1∴a
n+1<a
n,∴
(2t)2n<(2t)2n-1∴
0<2t<1?0<t< 點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.