【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口是的中點(diǎn),分別落在線段上.已知米,米,記.
(1)試將污水凈化管道的長(zhǎng)度表示為的函數(shù),并寫(xiě)出定義域;
(2)若,求此時(shí)管道的長(zhǎng)度;
(3)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度.
【答案】(1),.(2) 米 (3)或時(shí),污水凈化效果最好,此時(shí)管道的長(zhǎng)度為米
【解析】
根據(jù)直角三角形表示,,,即得結(jié)果,根據(jù)同角三角函數(shù)關(guān)系求得,即得結(jié)果,利用同角三角函數(shù)關(guān)系,將函數(shù)轉(zhuǎn)化為一元函數(shù),根據(jù)單調(diào)性得結(jié)果.
解:,,.
由于,,
所以,所以.所以,.
當(dāng)時(shí),,
米.
,設(shè),則,
所以.由于,所以.
由于在上單調(diào)遞減,
所以當(dāng),即或時(shí),L取得最大值米
答:當(dāng)或時(shí),污水凈化效果最好,此時(shí)管道的長(zhǎng)度為米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x2+bx+b) (b∈R)
(1)當(dāng)b=4時(shí),求f(x)的極值;
(2)若f(x)在區(qū)間(0, )上單調(diào)遞增,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班名同學(xué)的數(shù)學(xué)小測(cè)成績(jī)的頻率分布表如圖所示,其中,且分?jǐn)?shù)在的有人.
(1)求的值;
(2)若分?jǐn)?shù)在的人數(shù)是分?jǐn)?shù)在的人數(shù)的,求從不及格的人中任意選取3人,其中分?jǐn)?shù)在50分以下的人數(shù)為,求的數(shù)學(xué)期.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)72名不同性別的大學(xué)生在購(gòu)買(mǎi)食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:
男 | 女 | 總計(jì) | ||
讀營(yíng)養(yǎng)說(shuō)明 | 16 | 28 | 44 | |
不讀營(yíng)養(yǎng)說(shuō)明 | 20 | 8 | 28 | |
總計(jì) | 36 | 36 | 72 |
(1)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為性別和是否看營(yíng)養(yǎng)說(shuō)明有關(guān)系呢?
(2)從被詢問(wèn)的28名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到女生人數(shù)
的分布列及數(shù)學(xué)期望.
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有成立.
(1)判斷在上的單調(diào)性,并證明;
(2)解不等式:;
(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,若、、是的三條邊長(zhǎng),則下列結(jié)論:①對(duì)于一切都有;②存在使、、不能構(gòu)成一個(gè)三角形的三邊長(zhǎng);③為鈍角三角形,存在,使,其中正確的個(gè)數(shù)為______個(gè)
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn),M,N分別是棱AB,AD,A1B1 , A1D1的中點(diǎn),點(diǎn)P,Q分別在棱DD1 , BB1上移動(dòng),且DP=BQ=λ(0<λ<2)
(1)當(dāng)λ=1時(shí),證明:直線BC1∥平面EFPQ;
(2)是否存在λ,使面EFPQ與面PQMN所成的二面角為直二面角?若存在,求出λ的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中:
①定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)在R上是增函數(shù);②若f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);③函數(shù)y=x-0.5是(0,1)上的減函數(shù);④對(duì)應(yīng)法則和值域相同的函數(shù)的定義域也相同;⑤若x0是二次函數(shù)y=f(x)的零點(diǎn),且m<x0<n,那么f(m)f(n)<0一定成立.
寫(xiě)出上述所有正確結(jié)論的序號(hào):_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com