【題目】已知

當(dāng)時(shí),求的值;

當(dāng)時(shí),是否存在正整數(shù)nr,使得、、,依次構(gòu)成等差數(shù)列?并說明理由;

當(dāng)時(shí),求的值m表示

【答案】(1);(2)不存在;(3).

【解析】

的二項(xiàng)式定理中,先令得所有項(xiàng)系數(shù)和,再令得常數(shù)項(xiàng),然后相減即得.

變成后,利用二項(xiàng)展開式的通項(xiàng)公式可得,再假設(shè)存在正整數(shù)n,r滿足題意,利用等差數(shù)列的性質(zhì)得,化簡(jiǎn)整理,解方程即可判斷存在性;

求得,2,3的代數(shù)式的值,即可得到所求結(jié)論.

解:

,

當(dāng)時(shí),令,可得:

,

;

當(dāng)時(shí),假設(shè)存在正整數(shù)nr,使得、,依次構(gòu)成等差數(shù)列,

由二項(xiàng)式定理可知,,若、、成等差數(shù)列,則

,即

化簡(jiǎn)得,

即為,

、成等差數(shù)列,同理可得

即有,

即為

化為,

可得,方程無解,

則不存在正整數(shù)n,r,使得、、,依次構(gòu)成等差數(shù)列;

,

當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí),

可得時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E,F(xiàn)分別是AB,AP的中點(diǎn).

(1)求證:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐V﹣ABCD中(底面是正方形,側(cè)棱均相等),AB=2,VA= ,且該四棱錐可繞著AB任意旋轉(zhuǎn),旋轉(zhuǎn)過程中CD∥平面α,則正四棱錐V﹣ABCD在平面α內(nèi)的正投影的面積的取值范圍是(
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線C1 , A,B兩點(diǎn)的極坐標(biāo)分別為(2, )和(2, ),將曲線C1上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的一半,得到曲線C2
(1)寫出C,D的直角坐標(biāo)及曲線C2的參數(shù)方程;
(2)設(shè)M為C2上任意一點(diǎn),求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫 (℃)與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):

日期

1月11日

1月12日

1月13日

1月14日

1月15日

平均氣溫(℃)

9

10

12

11

8

銷量(杯)

23

25

30

26

21

(1)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;

(2)據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報(bào)1月16日的白天平均氣溫7(℃),請(qǐng)預(yù)測(cè)該奶茶店這種飲料的銷量.

(參考公式:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,若方程有四個(gè)不同的解,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率是,一個(gè)頂點(diǎn)是

)求橢圓的方程;

)設(shè),是橢圓上異于點(diǎn)的任意兩點(diǎn),且.試問:直線是否恒過一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案