【題目】古希臘數(shù)學(xué)家阿波羅尼斯在他的著作《圓錐曲線論》中記載了用平面切割圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑均為1,母線長均為3,記過圓錐軸的平面為平面(與兩個(gè)圓錐側(cè)面的交線為),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的交線即雙曲線的一部分,且雙曲線的兩條漸近線分別平行于,則雙曲線的離心率為(

A.B.C.D.

【答案】A

【解析】

求得圓錐的高,可得矩形的對(duì)角線長,即有,的夾角,可得兩條漸近線的夾角,由漸近線方程和離心率公式,計(jì)算可得所求值.

解:設(shè)與平面平行的平面為,以的交點(diǎn)在平面內(nèi)的射影為坐標(biāo)原點(diǎn),兩圓錐的軸在平面內(nèi)的射影為軸,在平面內(nèi)與軸垂直的直線為軸,建立平面直角坐標(biāo)系.

根據(jù)題意可設(shè)雙曲線.

由題意可得雙曲線的漸近線方程為

,得離心率.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2

1)求證:平面;

2)在圖2中,若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓的直徑,點(diǎn)是圓上異于的點(diǎn),直線平面,,分別是的中點(diǎn).

(Ⅰ)記平面與平面的交線為,試判斷直線與平面的位置關(guān)系,并加以證明;

(Ⅱ)設(shè),求二面角大小的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車產(chǎn)業(yè)的迅速發(fā)展,下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計(jì)表:

年份

2014

2015

2016

2017

2018

銷量(萬臺(tái))

8

10

13

25

24

某機(jī)構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:

購置傳統(tǒng)燃油車

購置新能源車

總計(jì)

男性車主

6

24

女性車主

2

總計(jì)

30

1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷是否線性相關(guān);

2)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān);

參考公式:,,其中.,若,則可判斷線性相關(guān).

附表:

010

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅(jiān)決貫徹落實(shí)中央扶貧工作重大決策部署,在各個(gè)貧困縣全力推進(jìn)定點(diǎn)扶貧各項(xiàng)工作,取得了積極成效,某貧困縣為了響應(yīng)國家精準(zhǔn)扶貧的號(hào)召,特地承包了一塊土地,已知土地的使用面積以及相應(yīng)的管理時(shí)間的關(guān)系如下表所示:

土地使用面積(單位:畝)

1

2

3

4

5

管理時(shí)間(單位:月)

8

10

13

25

24

并調(diào)查了某村300名村民參與管理的意愿,得到的部分?jǐn)?shù)據(jù)如下表所示:

愿意參與管理

不愿意參與管理

男性村民

150

50

女性村民

50

1)求出相關(guān)系數(shù)的大小,并判斷管理時(shí)間與土地使用面積是否線性相關(guān)?

2)是否有99.9%的把握認(rèn)為村民的性別與參與管理的意愿具有相關(guān)性?

3)若以該村的村民的性別與參與管理意愿的情況估計(jì)貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學(xué)期望。

參考公式:

其中。臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,是菱形,,平面,.

1)求證:平面平面;

2)求平面與平面構(gòu)成的二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)若二項(xiàng)式的展開式中存在常數(shù)項(xiàng),則的最小值為______

2)從6名志愿者中選出4人,分別參加兩項(xiàng)公益活動(dòng),每項(xiàng)活動(dòng)至少1人,則不同安排方案的種數(shù)為____.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,分別為,的中點(diǎn), 上異于,的點(diǎn), .

1)證明:平面平面;

2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案