動點(diǎn)P到x軸,y軸的距離之比等于非零常數(shù)k,則動點(diǎn)P的軌跡方程是( 。
A、y=
x
k
(x≠0)
B、y=kx(x≠0)
C、y=-
x
k
(x≠0)
D、y=±kx(x≠0)
考點(diǎn):軌跡方程
專題:綜合題
分析:設(shè)出P的坐標(biāo),由題意列等式,化簡后得答案.
解答: 解:設(shè)P(x,y),
由題意可得:
|y|
|x|
=k(x≠0)

即y=±kx(x≠0).
故選:D.
點(diǎn)評:本題考查了軌跡方程的求法,關(guān)鍵是由已知列出等式,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為2的正方形ABCD中,E是AB邊上的點(diǎn),F(xiàn)是邊BC上的點(diǎn),且BE=BF,若將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)A1
(1)當(dāng)BE=BF=
1
2
BC時,求三棱錐A1-EFD的體積;
(2)當(dāng)BE=BF=
1
2
BC時,求二面角A1-EF-D的平面角的正切值;
(3)當(dāng)E、F點(diǎn)在何位置時,點(diǎn)A1在正方形ABCD的對角線BD上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2是橢圓
x2
16
+
y2
3
=1的兩個焦點(diǎn),P是橢圓上一點(diǎn),則|PF1|•|PF2|有最
 
值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是( 。
A、在同一直角坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點(diǎn)
B、已知向量
a
,
b
為非零向量,則“
a
,
b
的夾角為鈍角”的充要條件是“
a
,
b
<0”
C、在△ABC中,A>B的充要條件是sinA>sinB
D、從總體中隨機(jī)抽出一個容量為20的樣本,其數(shù)據(jù)的分組及各組的頻數(shù)如下表,則估計(jì)總體的中位數(shù)為18
分 組[12,16)[16,20)[20,24)[24,28)
頻 數(shù)4853

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log 
1
2
(-2x2+5x+3)的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M是所有同時滿足下列性質(zhì)的函數(shù)f(x)的集合:
①函數(shù)f(x)在其定義域是單調(diào)函數(shù);
②在函數(shù)f(x)的定義域內(nèi)存在區(qū)間[a,b],使得f(x)在[a,b]上的最小值是a,最大值是b.
(1)判斷函數(shù)f(x)=x2,x∈[0,+∞)是否屬于集合M?若是,請求出相應(yīng)的區(qū)間[a,b];若不是,請說明理由;
(2)證明:函數(shù)f(x)=3log2x屬于集合M;
(3)若函數(shù)f(x)=
mx
1+|x|
屬于M,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的奇函數(shù)y=f(x),滿足f(x+1)=f(1-x),則周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a<-1,則關(guān)于x的不等式a(x-a)(x-
1
a
)<0的解集是( 。
A、{x|x<a或>
1
a
}
B、{x|x>a}
C、{x|x>a或x
1
a
}
D、{x|x
1
a
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式x3-mx2+x+m-2≤0在x∈(1,+∞)有解,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案