若函數(shù)f(x)=的反函數(shù)為y=f-1(x),且f-1(2)=1,則f (2)=   
【答案】分析:本題考查反函數(shù)的概念、反函數(shù)的求法、互為反函數(shù)的函數(shù)圖象之間的關(guān)系、等相關(guān)知識(shí);
可以用兩種方法:
其一、求出反函數(shù),將f-1(2)=1代入求出a的值,然后f (2)可求;
其二、利用互為反函數(shù)的函數(shù)圖象關(guān)于y=x對(duì)稱這一特征,將f-1(2)=1轉(zhuǎn)化為f(1)=2,直接代入原函數(shù)求a.
解答:解:法一:由已知設(shè)y=并解x得:x=y2+a
∴函數(shù)f(x)=的反函數(shù)為f-1(x)=x2+a,
由f-1(2)=1得:4+a=1,即:a=-3
∴f(x)=,從而,f (2)=;
法二:∵f-1(2)=1,∴f(1)=2
由此得:,∴a=-3
∴f(x)=,從而,f (2)=

答案:
點(diǎn)評(píng):本題方法二的解答,巧妙的利用了原函數(shù)和反函數(shù)的關(guān)系,將f-1(2)=1轉(zhuǎn)化為f(1)=2,直接代入原函數(shù)求a,回避了求反函數(shù)的過程.過程簡(jiǎn)捷,計(jì)算簡(jiǎn)單,這要比方法一求出反函數(shù),再將點(diǎn)的坐標(biāo)代入方便得多.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“若函數(shù)f(x)在區(qū)間(-1,0)和(0,1)上都單調(diào)遞增,則函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增”的一個(gè)反例是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+ax+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求a,b應(yīng)滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A、B,點(diǎn)M為函數(shù)圖象上的另一點(diǎn),且其縱坐標(biāo)yM>3,求點(diǎn)M到直線AB距離的最小值及取得最小值時(shí)M點(diǎn)的坐標(biāo);
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)的有奇數(shù)個(gè)”是否正確?若正確,給出證明,并舉一例;若不正確,請(qǐng)舉一反例說(shuō)明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)對(duì)任意的x∈R,均有f(x-1)+f(x+1)≥2f(x),則稱函數(shù)f(x)具有性質(zhì)P.
(Ⅰ)判斷下面兩個(gè)函數(shù)是否具有性質(zhì)P,并說(shuō)明理由.
①y=ax(a>1);    ②y=x3
(Ⅱ)若函數(shù)f(x)具有性質(zhì)P,且f(0)=f(n)=0(n>2,n∈N*),
求證:對(duì)任意i∈{1,2,3,…,n-1}有f(i)≤0;
(Ⅲ)在(Ⅱ)的條件下,是否對(duì)任意x∈[0,n]均有f(x)≤0.若成立給出證明,若不成立給出反例.

查看答案和解析>>

同步練習(xí)冊(cè)答案