如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角。

(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
(1)參考解析;(2)

試題分析:(1)要證明平面⊥平面,從圖形中確定證明垂直于平面.從而要在平面中找到兩條相交直線與垂直.顯然.通過計(jì)算可得直線.所以可得直線與平面垂直.
(2)要求二面角A—B1C—B的余弦值,要找的這二面角的平面角.通過計(jì)算可得是等邊三角形,并且是等腰直角三角形.所以只要取的中點(diǎn)O.即可得角AOB為所求的二面角的平面角.應(yīng)用余弦定理即可求得.
試題解析:(1)證:∵BB1⊥面ABC
∴B1C與面ABC所成的角為∠B1CB
∴∠B1CB=450
∵BB1=1
∴BC=1
又∵BA=1,AC=
∴AB2+BC2=AC2
∴AB⊥BC
∵BB1⊥AB
BB1∩BC=B
∴AB⊥面B1BCC1
∵A1B1//AB
∴A1B1⊥面B1BCC1.∵A1B1面A1B1C
∴面A1B1C⊥面B1BCC1
(2)因?yàn)橹苯侨切?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031853969464.png" style="vertical-align:middle;" />中,.所以.所以為等邊三角形.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031854031540.png" style="vertical-align:middle;" />為等腰三角形.所以取得中點(diǎn)O,連結(jié)AO,BO,則所以為二面角A--B的平面角.因?yàn)橹苯侨切?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031854094460.png" style="vertical-align:middle;" />中. .在等邊三角形中. .所以在三角形中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱中,,,,D為BC中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求證:;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,等腰直角三角形的直角邊,沿其中位線將平面折起,使平面⊥平面,得到四棱錐,設(shè)、、、的中點(diǎn)分別為、、、.

(1)求證:、、四點(diǎn)共面;
(2)求證:平面平面;
(3)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).

(1)求證:∥平面;
(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,且,,,

(Ⅰ)平面PAD與平面PAB是否垂直?并說明理由;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E為PA的中點(diǎn).

(1)證明:DE∥平面PBC;
(2)證明:DE⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體中,,分別為棱,的中點(diǎn),在平面內(nèi)且與平面平行的直線(  。
A.有無數(shù)條B.有2條C.有1條D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中錯(cuò)誤的是(      )
A.如果平面,那么平面內(nèi)一定存在直線平行于平面;
B.如果平面α不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面
C.如果平面,平面,,那么;
D.如果平面,那么平面內(nèi)所有直線都垂直于平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,、分別是、的中點(diǎn),則異面直線所成角的大小是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案