11.三個(gè)數(shù)0.76,60.7,log0.76的大小關(guān)系為( 。
A.0.76<log0.76<60.7B.log0.76<0.76<60.7
C.log0.76<60.7<0.76D.0.76<60.7<log0.76

分析 利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵0<0.76<0.70=1,
60.7>60=1,
log0.76<log0.71=0,
∴l(xiāng)og0.76<0.76<60.7
故選:B.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若將函數(shù)y=cos(2x)的圖象向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度,則平移后的函數(shù)對(duì)稱軸為$x=\frac{kπ}{2}-\frac{π}{12}({k∈Z})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)全集U=R,集合$A=\{x\left|{y=\sqrt{x}}\right.\},B=\{y\left|{y={{log}_2}(x-\frac{1}{2}),x∈[1,\frac{9}{2}]}\right.\}$,則(∁UA)∩B=( 。
A.B.[-1,0)C.$[1,\frac{9}{2}]$D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.(1)設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過(guò)點(diǎn)(0,4),離心率為$\frac{3}{5}$,求C的標(biāo)準(zhǔn)方程;
(2)已知拋物線的準(zhǔn)線方程是y=-2,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P 在橢圓上運(yùn)動(dòng),$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值為m,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值為n,且m≥2n,則該橢圓的離心率的取值范圍為[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)={log_2}^{\frac{x-1}{x+1}}$,g(x)=3ax+1-a,h(x)=f(x)+g(x).
(1)當(dāng)a=1時(shí),判斷函數(shù)h(x)在(1,+∞)上的單調(diào)性及零點(diǎn)個(gè)數(shù);
(2)若關(guān)于x的方程f(x)=log2g(x)有兩個(gè)不相等實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知等邊三角形的邊長(zhǎng)為a,P是△ABC所在平面上的一點(diǎn),求|PA|2+|PB|2+|PC|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知曲線C的極坐標(biāo)方程為2ρsinθ+ρcosθ=10,以極點(diǎn)為直角坐標(biāo)系原點(diǎn),極軸所在直線為x軸建立直角坐標(biāo)系,曲線C1的參數(shù)方程為${C_1}:\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),.
(Ⅰ)求曲線C的直角坐標(biāo)方程和曲線C1的普通方程;
(Ⅱ)若點(diǎn)M在曲線C1上運(yùn)動(dòng),試求出M到曲線C的距離的最小值及該點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.過(guò)點(diǎn)(3,2)的直線l與x軸的正半軸,y軸的正半軸分別交于A,B兩點(diǎn),當(dāng)△AOB的面積最小時(shí),求直線l的方程及△AOB面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案