1.過點(3,2)的直線l與x軸的正半軸,y軸的正半軸分別交于A,B兩點,當△AOB的面積最小時,求直線l的方程及△AOB面積.

分析 設(shè)A(a,0),B(0,b),可得直線l的方程為::$\frac{x}{a}$+$\frac{y}$=1.把點P(3,2)代入利用基本不等式的性質(zhì)、三角形面積計算公式即可得出.

解答 解:設(shè)A(a,0),B(0,b),則直線l的方程為:$\frac{x}{a}$+$\frac{y}$=1.
把點P(3,2)代入可得:$\frac{3}{a}$+$\frac{2}$=1.(a,b>0).
∴1≥2$\sqrt{\frac{3}{a}•\frac{2}}$,化為ab≥24,當且僅當a=6,b=4時取等號.
∴S△AOB=$\frac{1}{2}$ab≥12,l的方程為:$\frac{x}{6}$+$\frac{y}{4}$=1,即4x+6y-24=0

點評 本題考查了截距式、基本不等式的性質(zhì)、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三個數(shù)0.76,60.7,log0.76的大小關(guān)系為( 。
A.0.76<log0.76<60.7B.log0.76<0.76<60.7
C.log0.76<60.7<0.76D.0.76<60.7<log0.76

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,半徑為2的圓圓心的初始位置坐標為(0,2),圓上一點A坐標為(0,0).圓沿x軸正向滾動,當圓滾動到圓心位于(4,2)時,A點坐標為(4-2sin2,2-2cos2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,1+cosωx),$\overrightarrow{n}$=(cosωx,1-cosωx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中ω>0,若f(x)的一條對稱軸離最近的對稱中心的距離為$\frac{π}{4}$.
(1)求f(x)的對稱中心;
(2)若g(x)=f(x)+m在區(qū)間[0,$\frac{π}{2}$]上存在兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用系統(tǒng)抽樣法從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號).若假設(shè)第1組抽出的號碼為3,則第5組中用抽簽方法確定的號碼是35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程x±$\sqrt{3}$y=0,則C1與C2的離心率之積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.正方體ABCD-A1B1C1D1中,求證:直線AC1⊥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$tan(α+β)=\frac{1}{2},tanβ=\frac{1}{3}$,則$tan(α-\frac{π}{4})$=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{1}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知程序框圖如圖所示,當輸入x=2時,輸出結(jié)果為(  )
A.9B.10C.11D.12

查看答案和解析>>

同步練習(xí)冊答案