某校高中三個年級的在校學生人數(shù)情況如表:
性別
年級
高一年級高二年級高三年級
110150z
290450600
按年級采用分層抽樣的方法從在校學生中抽取50人,其中高一年級有10人.
(1)求z的值;
(2)按性別采用分層抽樣的方法從高三年級中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1個女同學的概率.
考點:相互獨立事件的概率乘法公式,分層抽樣方法,互斥事件的概率加法公式
專題:概率與統(tǒng)計
分析:(1)根據(jù)條件結合分層抽樣的定義求得三個年級的總人數(shù),從而求得x的值.
(2)先求出樣本中男、女生數(shù)量,再求得所抽取2人中沒有女生的概率,則用1減去此概率,即為所求.
解答: 解:(1)由于高一年級總人數(shù)為110+290=400,故三個年級的總人數(shù)為400×
50
10
=2000,
故z=2000-400-(150+450)-600=400 (人).
(2)樣本中女生數(shù)為5×
400
400+600
=2,故男生數(shù)為3,將該樣本看成一個總體,從中任取2人,其中沒有女生的概率為
C
2
3
C
2
5
=
3
10
,
∴至少有1個女同學的概率為 1-
3
10
=
7
10
點評:本題主要考查分層抽樣的定義和方法,相互獨立事件的概率乘法公式,所求的事件的概率與它的對立事件的概率之間的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某校從高二年級學生中隨機抽取60名學生,將其會考的政治成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示頻率分布直方圖.
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計該校高二年級學生政治成績的平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-2|-|x-5|.
(Ⅰ)證明:|f(x)|≤3;
(Ⅱ)若函數(shù)g(x)=f(x)-logax(a>0且a≠1)有兩個零點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)求證:{an-n}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設數(shù)列{an}的前n項和Sn,求Sn+1-Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為加強公民的節(jié)水意識,某城市制定了以下用水收費標準:每戶每月用水未超過7m3時,每立方米收費1.0元,并加收0.2元的城市污水處理費;超過7m3的部分每立方米收費1.5元,并加收0.4元的城市污水處理費.
(1)寫出每月用水量x(m3)與應繳納水費y(元)之間的函數(shù)解析式;
(2)設計一個求該函數(shù)值的算法;
(3)畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:
分組頻數(shù)頻率
[10,15)mP
[15,20)24n
[20,25)40.1
[25,30)20.05
合計M1
(Ⅰ)求出表中M,p及圖中a的值;
(Ⅱ)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內的人數(shù);
(Ⅲ)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[25,30)內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:等腰梯形ABCD,E為底AB的中點,AD=DC=CB=
1
2
AB=2,沿ED折成四棱錐A-BCDE,使AC=
6

(1)證明:平面AED⊥平面BCDE;
(2)求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)在一個周期上的一系列對應值如下表:
x-
π
4
0
π
6
π
4
π
2
4
y01
1
2
0-10
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,AC=2,BC=3,A為銳角,且f(A)=-
1
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點A(-1,0),B(0,2),點P是圓(x-1)2+y2=1上任意一點,求△PAB面積的最大值與最小值.

查看答案和解析>>

同步練習冊答案