【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)區(qū)間;

2)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;

3)證明:當(dāng)時(shí),.

【答案】(1)上單調(diào)遞增,無單調(diào)減區(qū)間;(2);(3)證明見詳解.

【解析】

1)由題意可得切線斜率,也即,據(jù)此求得參數(shù),再求的單調(diào)區(qū)間即可.

2)若滿足題意,只需有兩個(gè)實(shí)數(shù)根,分離常數(shù),整理可得只需直線與函數(shù)有兩個(gè)交點(diǎn)即可,數(shù)形結(jié)合即可求得.

3)根據(jù)(1)中所求,,構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值,即可證明.

1,故可得

由題可得,代值可得,解得.

,則,

,解得,

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

,

即可得上單調(diào)遞增,無單調(diào)減區(qū)間.

2)函數(shù)有兩個(gè)極值點(diǎn),等價(jià)于有兩個(gè)不同的實(shí)數(shù)根.

也即有兩個(gè)實(shí)數(shù)根,

即可理解為直線與函數(shù)的圖像有兩個(gè)交點(diǎn).

,令,解得,

在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

,

又當(dāng)時(shí),,且趨于正無窮時(shí),趨于0,

當(dāng)趨于負(fù)無窮時(shí),趨于負(fù)無窮,

故在同一直角坐標(biāo)系中繪圖如下:

數(shù)形結(jié)合可知,要滿足題意,只需即可.

的取值范圍為.

3)由(1)可知,當(dāng)時(shí),,又

故可得,

要證不等式成立,

只需證當(dāng)時(shí),即可.

也就是證當(dāng)時(shí),即可.

,

因?yàn)楫?dāng)時(shí),,故可得,

即可得上單調(diào)遞增,

.

即證當(dāng)時(shí),,

故當(dāng)時(shí),成立,即證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于x的方程有四個(gè)不等實(shí)根,且恒成立,則實(shí)數(shù)的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在地正西方向處和正東方向處各一條正北方向的公路,現(xiàn)計(jì)劃在路邊各修建一個(gè)物流中心.

(1)若在處看,的視角,在處看測(cè)得,求,

(2)為緩解交通壓力,決定修建兩條互相垂直的公路,設(shè),公路的每千米建設(shè)成本為萬元,公路的每千米建設(shè)成本為萬元.為節(jié)省建設(shè)成本,試確定的位置,使公路的總建設(shè)成本最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

1)寫出的普通方程和的直角坐標(biāo)方程;

2)若相交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查宜昌一中高二年級(jí)男生的身高狀況,現(xiàn)從宜昌一中高二年級(jí)中隨機(jī)抽取100名男生作為樣本,下圖是樣本的身高頻率分布直方圖(身高單位:cm).

1)用樣本頻率估計(jì)高二男生身高在180cm及以上概率,并根據(jù)圖中數(shù)據(jù)估計(jì)宜昌一中高二男生的平均身高;

2)在該樣本中,求身高在180cm及以上的同學(xué)人數(shù),利用分層抽樣的方法再從身高在180cm及以上的兩組同學(xué)(180~185,185~190)中選出3名同學(xué),應(yīng)該如何選取;

3)在該樣本中,從身高在180cm及以上的同學(xué)中隨機(jī)挑選3人,這3人的身高都在185cm及以上的概率有多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為3的等邊三角形ABC,E,F分別在邊AB,AC上,且,MBC邊的中點(diǎn),AMEF于點(diǎn)O,沿EF,折到DEF的位置,使

1)證明平面EFCB

2)試在BC邊上確定一點(diǎn)N,使平面DOC,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為2,點(diǎn)的中點(diǎn).以為圓心,為半徑,作弧交于點(diǎn).若為劣弧上的動(dòng)點(diǎn),則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱中,,,的中點(diǎn),上一點(diǎn),且.

(Ⅰ)證明:平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

同步練習(xí)冊(cè)答案