【題目】如圖,已知正方形的邊長(zhǎng)為2,點(diǎn)為的中點(diǎn).以為圓心,為半徑,作弧交于點(diǎn).若為劣弧上的動(dòng)點(diǎn),則的最小值為__________.
【答案】
【解析】
首先以A為原點(diǎn),直線(xiàn)AB,AD分別為x,y軸,建立平面直角坐標(biāo)系,可設(shè)P(cosθ,sinθ),從而可表示出,根據(jù)兩角和的正弦公式即可得到5﹣2sin(θ+φ),從而可求出的最小值.
如圖,以A為原點(diǎn),邊AB,AD所在直線(xiàn)為x,y軸建立平面直角坐標(biāo)系,則:
A(0,0),C(2,2),D(0,2),設(shè)P(cosθ,sinθ)
∴(﹣cosθ,2﹣sinθ)
=(2﹣cosθ)(﹣cosθ)+(2﹣sinθ)2
=5﹣2(cosθ+2sinθ)sin(θ+φ),tanφ;
∴sin(θ+φ)=1時(shí),取最小值.
故答案為:5﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,角A,B,C的對(duì)邊分別為a,b,c,.
(1)求角C;
(2)設(shè)D為邊AC上一點(diǎn),AD=BD,若BC=2,的面積為3,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買(mǎi)2臺(tái)機(jī)器的客戶(hù),推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過(guò)2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過(guò)4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買(mǎi)2臺(tái)這種機(jī)器,F(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)購(gòu)買(mǎi)哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺(tái)數(shù) | 5 | 10 | 20 | 15 |
以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過(guò)質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)).
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直,求的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求下列橢圓的標(biāo)準(zhǔn)方程:
(1)已知橢圓長(zhǎng)軸是短軸的倍,并且過(guò)點(diǎn);
(2)已知橢圓經(jīng)過(guò)兩點(diǎn)、.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐A-BCDE,其中AC=BC=2,AC⊥BC,CD//BE且CD=2BE,CD⊥平面ABC,F為AD的中點(diǎn).
(1)求證:EF//平面ABC;
(2)設(shè)M是AB的中點(diǎn),若DM與平面ABC所成角的正切值為,求平面ACD與平面ADE夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.
(1)求的解析式;
(2)證明:曲線(xiàn)上任一點(diǎn)處的切線(xiàn)與直線(xiàn)和直線(xiàn)所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問(wèn)是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn),過(guò)其焦點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于、兩點(diǎn),滿(mǎn)足.
(1)求拋物線(xiàn)的方程;
(2)已知點(diǎn)的坐標(biāo)為,記直線(xiàn)、的斜率分別為,,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com