已知向量 
(Ⅰ)若,求向量的概率;
(Ⅱ)若用計(jì)算機(jī)產(chǎn)生的隨機(jī)二元數(shù)組構(gòu)成區(qū)域,求二元數(shù)組滿足1的概率.
(Ⅰ);(Ⅱ)。

試題分析:(Ⅰ)從取兩個(gè)數(shù)的基本事件有
,共9種      2分
設(shè)“向量”為事件
若向量,則      3分
∴事件包含的基本事件有,共2種      5分
∴所求事件的概率為       6分
(Ⅱ)二元數(shù)組構(gòu)成區(qū)域
設(shè)“二元數(shù)組滿足1”為事件
則事件    9分
∴所求事件的概率為       12分
點(diǎn)評(píng):典型題,本題難度不大,較為典型,古典概型概率的計(jì)算,關(guān)鍵是計(jì)算事件數(shù),可采用“樹(shù)圖法”“坐標(biāo)法”,以保證不重不漏。幾何概型概率的計(jì)算,關(guān)鍵是計(jì)算“幾何度量”,往往與面積,體積,線段長(zhǎng)度等有關(guān)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在進(jìn)行一項(xiàng)擲骰子放球的游戲中規(guī)定:若擲出1點(diǎn)或2點(diǎn),則在甲盒中放一球;否則,在乙盒中放一球,F(xiàn)在前后一共擲了4次骰子,設(shè)、分別表示甲、乙盒子中球的個(gè)數(shù)。
(Ⅰ)求的概率;
(Ⅱ)若求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在進(jìn)行一項(xiàng)擲骰子放球游戲中,規(guī)定:若擲出1點(diǎn),甲盒中放一球;
若擲出2點(diǎn)或3點(diǎn),乙盒中放一球;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙盒中放一球,前后共擲3
次,設(shè)分別表示甲,乙,丙3個(gè)盒中的球數(shù).
(1)求依次成公差大于0的等差數(shù)列的概率;
(2)記,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為豐富高三學(xué)生的課余生活,提升班級(jí)的凝聚力,某校高三年級(jí)6個(gè)班(含甲、乙)舉行唱歌比賽.比賽通過(guò)隨機(jī)抽簽方式?jīng)Q定出場(chǎng)順序.
求:(1)甲、乙兩班恰好在前兩位出場(chǎng)的概率;
(2)比賽中甲、乙兩班之間的班級(jí)數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學(xué)生“藍(lán)天綠樹(shù)、愛(ài)護(hù)環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時(shí)每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多3分或打滿7局時(shí)停止.
設(shè)某學(xué)校選手甲和選手乙比賽時(shí),甲在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.已知
第三局比賽結(jié)束時(shí)比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情
況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)
的.同一條道路去程與回程是否堵車相互獨(dú)立. 假設(shè)李生早上需要先開(kāi)車送小孩去丙地小學(xué),
再返回經(jīng)甲地趕去乙地上班.假設(shè)道路、、上下班時(shí)間往返出現(xiàn)擁堵的概率都是,
道路上下班時(shí)間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會(huì)遲到.

(1)求李生小孩按時(shí)到校的概率;
(2)李生是否有八成把握能夠按時(shí)上班?
(3)設(shè)表示李生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

盒子里有形狀大小完全相同的3個(gè)紅球和2個(gè)白球,如果不放回的依次取兩個(gè)球,則在第一次取到白球的條件下,第二次取到紅球的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在某校組織的一次籃球定點(diǎn)投籃測(cè)試中,規(guī)定每人最多投次,每次投籃的結(jié)果相互獨(dú)立.在處每投進(jìn)一球得分,在處每投進(jìn)一球得分,否則得分. 將學(xué)生得分逐次累加并用表示,如果的值不低于分就認(rèn)為通過(guò)測(cè)試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在處投一球,以后都在處投;方案2:都在處投籃.甲同學(xué)在處投籃的命中率為,在處投籃的命中率為.
(Ⅰ)甲同學(xué)選擇方案1.
求甲同學(xué)測(cè)試結(jié)束后所得總分等于4的概率;
求甲同學(xué)測(cè)試結(jié)束后所得總分的分布列和數(shù)學(xué)期望;
(Ⅱ)你認(rèn)為甲同學(xué)選擇哪種方案通過(guò)測(cè)試的可能性更大?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知每個(gè)人的血清中含有乙型肝炎病毒的概率為3‰,混合100人的血清,則混合血清中有乙型肝炎病毒的概率約為(精確到小數(shù)點(diǎn)后四位)  ________

查看答案和解析>>

同步練習(xí)冊(cè)答案