精英家教網 > 高中數學 > 題目詳情
為豐富高三學生的課余生活,提升班級的凝聚力,某校高三年級6個班(含甲、乙)舉行唱歌比賽.比賽通過隨機抽簽方式決定出場順序.
求:(1)甲、乙兩班恰好在前兩位出場的概率;
(2)比賽中甲、乙兩班之間的班級數記為,求的分布列和數學期望.
(1)(2)

0
1
2
3
4







試題分析:(1)設“甲、乙兩班恰好在前兩位出場”為事件,則 
所以 甲、乙兩班恰好在前兩位出場的概率為            4分
(2)隨機變量的可能取值為.
, , ,
          10分
隨機變量的分布列為:

0
1
2
3
4






因此
即隨機變量的數學期望為.                               12分
點評:求分布列的主要步驟:1,找到隨機變量可以取的值,2,求出各隨機變量值對應的概率,3匯總成分布列,其中求概率考查的是古典概型概率
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

一個工人看管三臺機床,在一小時內,這三臺機床需要工人照管的概率分別0.9、0.8、0.7,則沒有一臺機床需要工作照管的概率為 (   )
A.0.006B.0.018C.0.06D.0.014

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

甲乙兩班進行消防安全知識競賽,每班出3人組成甲乙兩支代表隊,首輪比賽每人一道必答題,答對則為本隊得1分,答錯不答都得0分,已知甲隊3人每人答對的概率分別為,乙隊每人答對的概率都是.設每人回答正確與否相互之間沒有影響,用表示甲隊總得分.
(I)求隨機變量的分布列及其數學期望E();
(Ⅱ)求在甲隊和乙隊得分之和為4的條件下,甲隊比乙隊得分高的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

)袋中裝有大小相同的黑球、白球和紅球共10個。已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(1)求袋中各色球的個數;
(2)從袋中任意摸出3個球,記得到白球的個數為ξ,求隨機變量ξ的分布列及數學期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某校從高二年級學生中隨機抽取60名學生,將其會考的政治成績(均為整數)分成六段: ,…,后得到如下頻率分布直方圖.

(Ⅰ)求圖中的值
(Ⅱ)根據頻率分布直方圖,估計該校高二年級學生政治成績的平均分;
(Ⅲ)用分層抽樣的方法在80分以上(含 80分)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意選取2人,求其中恰有1人的分數不低于90分的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

某同學在高考報志愿時,報了4所符合自己分數和意向的高校,若每一所學校錄取的概率為,則這位同學被其中一所學校錄取的概率為            ;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知向量 
(Ⅰ)若,求向量的概率;
(Ⅱ)若用計算機產生的隨機二元數組構成區(qū)域,求二元數組滿足1的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知關于x的一元二次方程x2-2(a-2)xb2+16=0.
(1)若a,b是一枚骰子擲兩次所得到的點數,求方程有兩正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程沒有實根的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


某種有獎銷售的飲料,瓶蓋內印有“獎勵一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內印有“獎勵一瓶”字樣即為中獎,中獎概率為.甲、乙、丙三位同學每人購買了一瓶該飲料.
(1)求甲中獎且乙、丙都沒有中獎的概率;
(2)求中獎人數ξ的分布列及數學期望Eξ.

查看答案和解析>>

同步練習冊答案