15.在△ABC中,已知BC=6,C=45°,cosA=$\frac{4}{5}$,則△ABC的面積為21.

分析 由已知及同角三角函數(shù)基本關(guān)系式可求sinA的值,由正弦定理可求得AB的值,利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可求sinB的值,進而利用三角形面積公式即可計算得解.

解答 解:在△ABC中,∵cosA=$\frac{4}{5}$,可得sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$,
∴由正弦定理可得:AB=$\frac{BCsinC}{sinA}$=$\frac{6×\frac{\sqrt{2}}{2}}{\frac{3}{5}}$=5$\sqrt{2}$,∵sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$+$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
∴S△ABC=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{2}×5\sqrt{2}×6×$$\frac{7\sqrt{2}}{10}$=21.
故答案為:21.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形面積公式在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,AB為半圓O的直徑,AD⊥AB,過D作圓的另一切線DC交AB的延長線于E,C為切點,連接BC,OD.
(Ⅰ)求證:BC∥OD;
(Ⅱ)如果EB=2,OB=1,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.甲、乙兩所學校高一年級分別有1 200人,1 000人,為了了解兩所學校全體高一年級學生在該地區(qū)某次聯(lián)考中的技術(shù)考試成績情況,采用分層抽樣方法從兩所學校一共抽取了110名學生的技術(shù)考試成績,并作出了頻數(shù)分布統(tǒng)計表如表:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(1)計算x,y的值;
(2)若成績不小于120分為優(yōu)秀,否則為非優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)填寫答題卷中的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.10的前提下認為兩所學校高一技術(shù)考試成績有差異(計算保留3位小數(shù)).
參考數(shù)據(jù)與公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
臨界值表:
P(K2≥k00.150.100.050.010
k02.0722.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a,b,c滿足c<b<a,且ac<0,則下列不等式中恒成立的有( 。
①$\frac{a}>\frac{c}{a}$②$\frac{b-a}{c}$>0③$\frac{b^2}{c}>\frac{a^2}{c}$④$\frac{a-c}{ac}$<0.
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求函數(shù)y=$\frac{\sqrt{5x-2}}{x}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)的導函數(shù)為f′(x),e為自然對數(shù)的底數(shù),若函數(shù)f(x)滿足xf′(x)+f(x)=$\frac{lnx}{x}$,且f(e)=$\frac{1}{e}$,則不等式f(x)-x>$\frac{1}{e}$-e的解集是(0,e).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=ex-kx+k(k∈R).
(1)試討論函數(shù)y=f(x)的單調(diào)性;
(2)若該函數(shù)有兩個不同的零點x1,x2,試求:(i)實數(shù)k的取值范圍;(ii)證明:x1+x2>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=ln(1+x)-$\frac{ax}{x+1}$(a>0)
(Ⅰ)若x=1是函數(shù)f(x)的一個極值點,求a的值;
(Ⅱ)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(Ⅲ)證明:${({\frac{2015}{2016}})^{2016}}<\frac{1}{e}$(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={x|-2<x<-1或x>0},B={x|a≤x≤b},滿足A∩B={x|0<x≤2},A∪B={x|x>-2},求實數(shù)a,b的值.

查看答案和解析>>

同步練習冊答案