(本題12分)
已知平面,且是垂足,

證明:

先證,再證,進而求得

解析試題分析:
證明:因為,所以,,
又因為所以,                                       ……4分
同理可證,                                                  ……6分
又因為,所以,
所以.                                                      ……12分
考點:本小題主要考查空間中線面垂直的證明,考查學生的空間想象能力和推理能力.
點評:線面垂直的判定定理中強調(diào)平面內(nèi)的兩條直線相交,這點不要忘記.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直角梯形中,,,,將沿折起,使平面平面,得到幾何體,如圖2所示.

(Ⅰ)求證:平面;
(Ⅱ)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱錐P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.

(1)求證:PC⊥平面BDE;
(2)若點Q是線段PA上任一點,判斷BD、DQ的位置關系,并證明結(jié)論;
(3)若AB=2,求三棱錐B﹣CED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長為1的正方體中.

(1)求異面直線所成的角;
(2)求證平面⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足

(1)證明:PN⊥AM
(2)若,求直線AA1與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀圖與三視圖的側(cè)視圖,俯視圖,在直觀圖中,MBD的中點,NBC的中點,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關數(shù)據(jù)如圖所示.

(1)求該幾何體的體積;
(2)求證:AN∥平面CME;
(3)求證:平面BDE⊥平面BCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高速公路收費站入口處的安全標識墩如圖4所示,墩的上半部分是側(cè)面全等的四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.圖5、圖6分別是該標識墩的正(主)視圖和俯視圖.
(Ⅰ)求該安全標識墩的體積;
(Ⅱ)證明:直線BD平面PEG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)一個圓錐,它的底面直徑和高均為.
(1)求這個圓錐的表面積和體積.
(2)在該圓錐內(nèi)作一內(nèi)接圓柱,當圓柱的底面半徑和高分別為多少時,它的側(cè)面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面是矩形,⊥平面,,.

(1)求證:⊥平面
(2)求二面角余弦值的大;
(3)求點到平面的距離.

查看答案和解析>>

同步練習冊答案