6.設集合 A={1,2,4},B={a,3,5},若 A∩B={4},則 A∪B=( 。
A.{4}B.{1,2,4,5}C.{1,2,3,4,5}D.{a,1,2,3,4,5}

分析 由A,B,以及兩集合的交集確定出a的值,進而確定出B,找出兩集合的并集即可.

解答 解:∵A={1,2,4},B={a,3,5},且A∩B={4},
∴a=4,即B={3,4,5},
則A∪B={1,2,3,4,5},
故選:C.

點評 此題考查了交集及其運算,并集及其運算,熟練掌握各自的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知圓(x-1)2+(y+1)2=16的一條直徑恰好經(jīng)過直線x-2y+3=0被圓所截弦的中點,則該直徑所在直線的方程為2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若cos2θ+2msinθ-2m-2<0對θ∈R恒成立,則實數(shù)m的取值范圍是( 。
A.m<1-$\sqrt{2}$B.m>1-$\sqrt{2}$C.1-$\sqrt{2}$<m<1+$\sqrt{2}$D.1-$\sqrt{2}$<m≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某機床廠用98萬元購進一臺數(shù)控機床,第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該機床使用后,從第一年開始每年的收入均為50萬元.設使用x年后數(shù)控機床的盈利總額為y萬元.
(1)寫出y與x之間的函數(shù)關系式;并求第幾年開始,該機床開始盈利;
(2)問哪一年平均盈利額最大、最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求非零常數(shù)a,b,使得$\underset{lim}{x→0}$$\frac{2arctanx-ln\frac{1+x}{1-x}}{{x}^{a}}$=b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知$cos({α+\frac{π}{6}})=\frac{1}{3}$,$α∈[{0,\frac{π}{2}}]$,那么cosα等于(  )
A.$\frac{2\sqrt{2}-\sqrt{3}}{6}$B.$\frac{2\sqrt{2}+\sqrt{3}}{6}$C.$\frac{2\sqrt{3}-\sqrt{2}}{6}$D.$\frac{2\sqrt{3}+\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=1.
(I)若直線l過點 A(4,0),且被圓C1截得的弦長為2$\sqrt{3}$,求直線l的方程;
(II)若從圓C1的圓心發(fā)出一束光線經(jīng)直線x-y-3=0反射后,反射線與圓C2有公共點,試求反射線所在直線的斜率的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上單調遞減,在實數(shù)a的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.“x>2或x<0”是“$\frac{1}{x}<1$”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案